Discover answers to your questions with Westonci.ca, the leading Q&A platform that connects you with knowledgeable experts. Connect with a community of experts ready to help you find accurate solutions to your questions quickly and efficiently. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
Certainly! Let's graph the given system of inequalities step-by-step:
### Given Inequalities:
1. [tex]\( y \leq \frac{1}{3}x - 2 \)[/tex]
2. [tex]\( x < 4 \)[/tex]
### Step 1: Graph the Boundary Line for the First Inequality
Begin by graphing the line [tex]\( y = \frac{1}{3}x - 2 \)[/tex]. This line serves as the boundary for the inequality [tex]\( y \leq \frac{1}{3}x - 2 \)[/tex].
#### Intercepts:
- Y-intercept: When [tex]\( x = 0 \)[/tex]:
[tex]\[ y = \frac{1}{3}(0) - 2 = -2 \][/tex]
So, the y-intercept is [tex]\( (0, -2) \)[/tex].
- X-intercept: When [tex]\( y = 0 \)[/tex]:
[tex]\[ 0 = \frac{1}{3}x - 2 \implies \frac{1}{3}x = 2 \implies x = 6 \][/tex]
So, the x-intercept is [tex]\( (6, 0) \)[/tex].
#### Drawing the Line
Plot the points [tex]\( (0, -2) \)[/tex] and [tex]\( (6, 0) \)[/tex] on a coordinate plane, then draw the line connecting these points. This line has a slope of [tex]\( \frac{1}{3} \)[/tex].
Since the inequality is [tex]\( y \leq \frac{1}{3}x - 2 \)[/tex], shade the region below and on the line.
### Step 2: Graph the Inequality [tex]\( x < 4 \)[/tex]
Draw a vertical dashed line at [tex]\( x = 4 \)[/tex]. A dashed line is used because the inequality is strict (it doesn't include [tex]\( x = 4 \)[/tex]).
Shade to the left of this line because the inequality specifies [tex]\( x < 4 \)[/tex].
### Step 3: Identify the Solution Region
The solution to this system of inequalities is the region where the shaded areas overlap:
- Below and on the line [tex]\( y = \frac{1}{3}x - 2 \)[/tex]
- To the left of [tex]\( x = 4 \)[/tex]
### Graph Summary
1. Plot the line [tex]\( y = \frac{1}{3}x - 2 \)[/tex]. Shade below this line (including the line since it is [tex]\( \leq \)[/tex]).
2. Draw a dashed vertical line at [tex]\( x = 4 \)[/tex]. Shade to the left of this line (not including the line itself).
3. The overlapping shaded region of these two inequalities is the solution to the system.
### Graph:
1. Boundary: Line [tex]\( y = \frac{1}{3}x - 2 \)[/tex]
- Y-intercept at [tex]\( (0, -2) \)[/tex]
- X-intercept at [tex]\( (6, 0) \)[/tex]
2. Vertical Boundary: Dashed line at [tex]\( x = 4 \)[/tex]
3. Shading:
- Below the line [tex]\( y = \frac{1}{3}x - 2 \)[/tex]
- To the left of [tex]\( x = 4 \)[/tex]
This overlapping region shows all possible [tex]\( (x, y) \)[/tex] pairs that satisfy both inequalities.
### Given Inequalities:
1. [tex]\( y \leq \frac{1}{3}x - 2 \)[/tex]
2. [tex]\( x < 4 \)[/tex]
### Step 1: Graph the Boundary Line for the First Inequality
Begin by graphing the line [tex]\( y = \frac{1}{3}x - 2 \)[/tex]. This line serves as the boundary for the inequality [tex]\( y \leq \frac{1}{3}x - 2 \)[/tex].
#### Intercepts:
- Y-intercept: When [tex]\( x = 0 \)[/tex]:
[tex]\[ y = \frac{1}{3}(0) - 2 = -2 \][/tex]
So, the y-intercept is [tex]\( (0, -2) \)[/tex].
- X-intercept: When [tex]\( y = 0 \)[/tex]:
[tex]\[ 0 = \frac{1}{3}x - 2 \implies \frac{1}{3}x = 2 \implies x = 6 \][/tex]
So, the x-intercept is [tex]\( (6, 0) \)[/tex].
#### Drawing the Line
Plot the points [tex]\( (0, -2) \)[/tex] and [tex]\( (6, 0) \)[/tex] on a coordinate plane, then draw the line connecting these points. This line has a slope of [tex]\( \frac{1}{3} \)[/tex].
Since the inequality is [tex]\( y \leq \frac{1}{3}x - 2 \)[/tex], shade the region below and on the line.
### Step 2: Graph the Inequality [tex]\( x < 4 \)[/tex]
Draw a vertical dashed line at [tex]\( x = 4 \)[/tex]. A dashed line is used because the inequality is strict (it doesn't include [tex]\( x = 4 \)[/tex]).
Shade to the left of this line because the inequality specifies [tex]\( x < 4 \)[/tex].
### Step 3: Identify the Solution Region
The solution to this system of inequalities is the region where the shaded areas overlap:
- Below and on the line [tex]\( y = \frac{1}{3}x - 2 \)[/tex]
- To the left of [tex]\( x = 4 \)[/tex]
### Graph Summary
1. Plot the line [tex]\( y = \frac{1}{3}x - 2 \)[/tex]. Shade below this line (including the line since it is [tex]\( \leq \)[/tex]).
2. Draw a dashed vertical line at [tex]\( x = 4 \)[/tex]. Shade to the left of this line (not including the line itself).
3. The overlapping shaded region of these two inequalities is the solution to the system.
### Graph:
1. Boundary: Line [tex]\( y = \frac{1}{3}x - 2 \)[/tex]
- Y-intercept at [tex]\( (0, -2) \)[/tex]
- X-intercept at [tex]\( (6, 0) \)[/tex]
2. Vertical Boundary: Dashed line at [tex]\( x = 4 \)[/tex]
3. Shading:
- Below the line [tex]\( y = \frac{1}{3}x - 2 \)[/tex]
- To the left of [tex]\( x = 4 \)[/tex]
This overlapping region shows all possible [tex]\( (x, y) \)[/tex] pairs that satisfy both inequalities.
Thanks for stopping by. We are committed to providing the best answers for all your questions. See you again soon. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Westonci.ca is your go-to source for reliable answers. Return soon for more expert insights.