Westonci.ca is the premier destination for reliable answers to your questions, brought to you by a community of experts. Discover the answers you need from a community of experts ready to help you with their knowledge and experience in various fields. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
To determine the solution to the inequality [tex]\(|3x| \geq 0\)[/tex], let's go through a detailed step-by-step analysis.
1. Understanding Absolute Value: The absolute value of a number is always non-negative. This means that for any real number [tex]\(y\)[/tex], [tex]\(|y| \geq 0\)[/tex].
2. Applying Absolute Value Properties: Given the inequality [tex]\(|3x| \geq 0\)[/tex], we recognize that the absolute value of [tex]\(3x\)[/tex] will always be a non-negative number.
- [tex]\(|3x|\)[/tex] represents the distance of [tex]\(3x\)[/tex] from zero on the number line.
- Since distance cannot be negative, [tex]\(|3x|\)[/tex] is always greater than or equal to zero, regardless of the value of [tex]\(x\)[/tex].
3. Solving the Inequality:
- Because [tex]\(|3x|\)[/tex] will always be non-negative for any real number [tex]\(x\)[/tex], it automatically satisfies the inequality [tex]\(|3x| \geq 0\)[/tex].
4. Conclusion: Since there are no restrictions on [tex]\(x\)[/tex] that would make the inequality false, the inequality holds for all real numbers.
Thus, the solution to the inequality [tex]\(|3x| \geq 0\)[/tex] is [tex]\(\boxed{\text{all real numbers}}\)[/tex].
1. Understanding Absolute Value: The absolute value of a number is always non-negative. This means that for any real number [tex]\(y\)[/tex], [tex]\(|y| \geq 0\)[/tex].
2. Applying Absolute Value Properties: Given the inequality [tex]\(|3x| \geq 0\)[/tex], we recognize that the absolute value of [tex]\(3x\)[/tex] will always be a non-negative number.
- [tex]\(|3x|\)[/tex] represents the distance of [tex]\(3x\)[/tex] from zero on the number line.
- Since distance cannot be negative, [tex]\(|3x|\)[/tex] is always greater than or equal to zero, regardless of the value of [tex]\(x\)[/tex].
3. Solving the Inequality:
- Because [tex]\(|3x|\)[/tex] will always be non-negative for any real number [tex]\(x\)[/tex], it automatically satisfies the inequality [tex]\(|3x| \geq 0\)[/tex].
4. Conclusion: Since there are no restrictions on [tex]\(x\)[/tex] that would make the inequality false, the inequality holds for all real numbers.
Thus, the solution to the inequality [tex]\(|3x| \geq 0\)[/tex] is [tex]\(\boxed{\text{all real numbers}}\)[/tex].
Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.