Explore Westonci.ca, the top Q&A platform where your questions are answered by professionals and enthusiasts alike. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.

Subtract.

Your answer should be a polynomial in standard form.

[tex]\[ \left(d^2 + 6d + 9\right) - \left(d^3 + 6d + 9\right) = \][/tex]

[tex]\(\square\)[/tex]


Sagot :

To subtract the polynomials [tex]\((d^2 + 6d + 9)\)[/tex] and [tex]\((d^3 + 6d + 9)\)[/tex], we will follow the step-by-step procedure below:

1. Write both polynomials in decreasing order of their degrees:
[tex]\[ (d^2 + 6d + 9) \][/tex]
[tex]\[ (d^3 + 6d + 9) \][/tex]

2. Adjust the lengths by adding zero coefficients where necessary:
Since the first polynomial does not have a [tex]\(d^3\)[/tex] term, we can adjust it by adding a zero coefficient for the [tex]\(d^3\)[/tex] term:
[tex]\[ (0d^3 + d^2 + 6d + 9) \][/tex]
The second polynomial already has a full representation in descending order:
[tex]\[ (d^3 + 6d + 9) \][/tex]

3. Rewrite both polynomials aligned by their degrees:
[tex]\[ 0d^3 + 1d^2 + 6d + 9 \][/tex]
[tex]\[ 1d^3 + 0d^2 + 6d + 9 \][/tex]

4. Subtract the corresponding coefficients:
- For the [tex]\(d^3\)[/tex] term: [tex]\(0 - 1 = -1\)[/tex]
- For the [tex]\(d^2\)[/tex] term: [tex]\(1 - 0 = 1\)[/tex]
- For the [tex]\(d\)[/tex] term: [tex]\(6 - 6 = 0\)[/tex]
- For the constant term: [tex]\(9 - 9 = 0\)[/tex]

5. Combine the results:
The polynomial resulting from the subtraction is:
[tex]\[ -1d^3 + 1d^2 + 0d + 0 \][/tex]

6. Simplify:
Discard any terms with zero coefficients:
[tex]\[ -d^3 + d^2 \][/tex]

Putting it all together, the polynomial in standard form after subtraction is:
[tex]\[ -d^3 + d^2 \][/tex]

Therefore, the answer is:
[tex]\[ d^2 + 6d + 9 - (d^3 + 6d + 9) = -d^3 + d^2 \][/tex]
Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.