Discover the answers to your questions at Westonci.ca, where experts share their knowledge and insights with you. Explore thousands of questions and answers from a knowledgeable community of experts on our user-friendly platform. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
To find the asymptotes of the function [tex]\( y = \tan \left( \frac{3}{4} x \right) \)[/tex], we need to determine where the tangent function has vertical asymptotes. The tangent function [tex]\( \tan(u) \)[/tex] has vertical asymptotes at [tex]\( u = \frac{\pi}{2} + n\pi \)[/tex] for any integer [tex]\( n \)[/tex].
Given [tex]\( y = \tan \left( \frac{3}{4} x \right) \)[/tex], our argument [tex]\( u \)[/tex] is [tex]\( \frac{3}{4} x \)[/tex]. We need to find where this leads to vertical asymptotes. Therefore, set:
[tex]\[ \frac{3}{4} x = \frac{\pi}{2} + n\pi \][/tex]
Solve for [tex]\( x \)[/tex]:
[tex]\[ x = \frac{\pi}{2} \cdot \frac{4}{3} + n\pi \cdot \frac{4}{3} \][/tex]
[tex]\[ x = \frac{2\pi}{3} + \frac{4n\pi}{3} \][/tex]
[tex]\[ x = \frac{2\pi (1 + 2n)}{3} \][/tex]
This equation shows that vertical asymptotes occur at multiples of [tex]\( \frac{2\pi}{3} \)[/tex] plus an additional [tex]\( \frac{2\pi}{3} \)[/tex]. Some specific values for [tex]\( n \)[/tex] produce:
For [tex]\( n = -1 \)[/tex]:
[tex]\[ x = \frac{2\pi (1 + 2(-1))}{3} = \frac{2\pi (1 - 2)}{3} = \frac{2\pi \cdot -1}{3} = -\frac{2\pi}{3} \][/tex]
For [tex]\( n = 0 \)[/tex]:
[tex]\[ x = \frac{2\pi (1 + 2(0))}{3} = \frac{2\pi \cdot 1}{3} = \frac{2\pi}{3} \][/tex]
For [tex]\( n = 1 \)[/tex]:
[tex]\[ x = \frac{2\pi (1 + 2(1))}{3} = \frac{2\pi (1 + 2)}{3} = \frac{2\pi \cdot 3}{3} = 2\pi \][/tex]
For [tex]\( n = -2 \)[/tex]:
[tex]\[ x = \frac{2\pi (1 + 2(-2))}{3} = \frac{2\pi (1 - 4)}{3} = \frac{2\pi \cdot -3}{3} = -2\pi \][/tex]
Notably, when plugging in [tex]\( n = -1 \)[/tex]:
[tex]\[ x = -\frac{4\pi}{3} \][/tex]
And plugging in [tex]\( n \)[/tex] correctly can lead to:
[tex]\[ x = -\frac{2\pi}{3} \][/tex]
Thus, evaluating the commonly found asymptotes within common ranges reveals:
[tex]\[ x = -\frac{4\pi}{3}, x = -\frac{2\pi}{3}, x = \frac{2\pi}{3}, x = \frac{4\pi}{3} \][/tex]
Given multiple choice, in the list:
- [tex]\( x = -\frac{4 \pi}{3} \)[/tex]
- [tex]\( x = -\frac{2 \pi}{3} \)[/tex]
### Therefore, both [tex]\(x = -\frac{4 \pi}{3} \text{ and } x = -\frac{2 \pi}{3}\)[/tex] are correct answers for the asymptotes of the function [tex]\( y = \tan \left( \frac{3}{4} x \right) \)[/tex].
Given [tex]\( y = \tan \left( \frac{3}{4} x \right) \)[/tex], our argument [tex]\( u \)[/tex] is [tex]\( \frac{3}{4} x \)[/tex]. We need to find where this leads to vertical asymptotes. Therefore, set:
[tex]\[ \frac{3}{4} x = \frac{\pi}{2} + n\pi \][/tex]
Solve for [tex]\( x \)[/tex]:
[tex]\[ x = \frac{\pi}{2} \cdot \frac{4}{3} + n\pi \cdot \frac{4}{3} \][/tex]
[tex]\[ x = \frac{2\pi}{3} + \frac{4n\pi}{3} \][/tex]
[tex]\[ x = \frac{2\pi (1 + 2n)}{3} \][/tex]
This equation shows that vertical asymptotes occur at multiples of [tex]\( \frac{2\pi}{3} \)[/tex] plus an additional [tex]\( \frac{2\pi}{3} \)[/tex]. Some specific values for [tex]\( n \)[/tex] produce:
For [tex]\( n = -1 \)[/tex]:
[tex]\[ x = \frac{2\pi (1 + 2(-1))}{3} = \frac{2\pi (1 - 2)}{3} = \frac{2\pi \cdot -1}{3} = -\frac{2\pi}{3} \][/tex]
For [tex]\( n = 0 \)[/tex]:
[tex]\[ x = \frac{2\pi (1 + 2(0))}{3} = \frac{2\pi \cdot 1}{3} = \frac{2\pi}{3} \][/tex]
For [tex]\( n = 1 \)[/tex]:
[tex]\[ x = \frac{2\pi (1 + 2(1))}{3} = \frac{2\pi (1 + 2)}{3} = \frac{2\pi \cdot 3}{3} = 2\pi \][/tex]
For [tex]\( n = -2 \)[/tex]:
[tex]\[ x = \frac{2\pi (1 + 2(-2))}{3} = \frac{2\pi (1 - 4)}{3} = \frac{2\pi \cdot -3}{3} = -2\pi \][/tex]
Notably, when plugging in [tex]\( n = -1 \)[/tex]:
[tex]\[ x = -\frac{4\pi}{3} \][/tex]
And plugging in [tex]\( n \)[/tex] correctly can lead to:
[tex]\[ x = -\frac{2\pi}{3} \][/tex]
Thus, evaluating the commonly found asymptotes within common ranges reveals:
[tex]\[ x = -\frac{4\pi}{3}, x = -\frac{2\pi}{3}, x = \frac{2\pi}{3}, x = \frac{4\pi}{3} \][/tex]
Given multiple choice, in the list:
- [tex]\( x = -\frac{4 \pi}{3} \)[/tex]
- [tex]\( x = -\frac{2 \pi}{3} \)[/tex]
### Therefore, both [tex]\(x = -\frac{4 \pi}{3} \text{ and } x = -\frac{2 \pi}{3}\)[/tex] are correct answers for the asymptotes of the function [tex]\( y = \tan \left( \frac{3}{4} x \right) \)[/tex].
Thanks for using our platform. We're always here to provide accurate and up-to-date answers to all your queries. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.