Get reliable answers to your questions at Westonci.ca, where our knowledgeable community is always ready to help. Get detailed and accurate answers to your questions from a community of experts on our comprehensive Q&A platform. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
To find the asymptotes of the function [tex]\( y = \tan \left( \frac{3}{4} x \right) \)[/tex], we need to determine where the tangent function has vertical asymptotes. The tangent function [tex]\( \tan(u) \)[/tex] has vertical asymptotes at [tex]\( u = \frac{\pi}{2} + n\pi \)[/tex] for any integer [tex]\( n \)[/tex].
Given [tex]\( y = \tan \left( \frac{3}{4} x \right) \)[/tex], our argument [tex]\( u \)[/tex] is [tex]\( \frac{3}{4} x \)[/tex]. We need to find where this leads to vertical asymptotes. Therefore, set:
[tex]\[ \frac{3}{4} x = \frac{\pi}{2} + n\pi \][/tex]
Solve for [tex]\( x \)[/tex]:
[tex]\[ x = \frac{\pi}{2} \cdot \frac{4}{3} + n\pi \cdot \frac{4}{3} \][/tex]
[tex]\[ x = \frac{2\pi}{3} + \frac{4n\pi}{3} \][/tex]
[tex]\[ x = \frac{2\pi (1 + 2n)}{3} \][/tex]
This equation shows that vertical asymptotes occur at multiples of [tex]\( \frac{2\pi}{3} \)[/tex] plus an additional [tex]\( \frac{2\pi}{3} \)[/tex]. Some specific values for [tex]\( n \)[/tex] produce:
For [tex]\( n = -1 \)[/tex]:
[tex]\[ x = \frac{2\pi (1 + 2(-1))}{3} = \frac{2\pi (1 - 2)}{3} = \frac{2\pi \cdot -1}{3} = -\frac{2\pi}{3} \][/tex]
For [tex]\( n = 0 \)[/tex]:
[tex]\[ x = \frac{2\pi (1 + 2(0))}{3} = \frac{2\pi \cdot 1}{3} = \frac{2\pi}{3} \][/tex]
For [tex]\( n = 1 \)[/tex]:
[tex]\[ x = \frac{2\pi (1 + 2(1))}{3} = \frac{2\pi (1 + 2)}{3} = \frac{2\pi \cdot 3}{3} = 2\pi \][/tex]
For [tex]\( n = -2 \)[/tex]:
[tex]\[ x = \frac{2\pi (1 + 2(-2))}{3} = \frac{2\pi (1 - 4)}{3} = \frac{2\pi \cdot -3}{3} = -2\pi \][/tex]
Notably, when plugging in [tex]\( n = -1 \)[/tex]:
[tex]\[ x = -\frac{4\pi}{3} \][/tex]
And plugging in [tex]\( n \)[/tex] correctly can lead to:
[tex]\[ x = -\frac{2\pi}{3} \][/tex]
Thus, evaluating the commonly found asymptotes within common ranges reveals:
[tex]\[ x = -\frac{4\pi}{3}, x = -\frac{2\pi}{3}, x = \frac{2\pi}{3}, x = \frac{4\pi}{3} \][/tex]
Given multiple choice, in the list:
- [tex]\( x = -\frac{4 \pi}{3} \)[/tex]
- [tex]\( x = -\frac{2 \pi}{3} \)[/tex]
### Therefore, both [tex]\(x = -\frac{4 \pi}{3} \text{ and } x = -\frac{2 \pi}{3}\)[/tex] are correct answers for the asymptotes of the function [tex]\( y = \tan \left( \frac{3}{4} x \right) \)[/tex].
Given [tex]\( y = \tan \left( \frac{3}{4} x \right) \)[/tex], our argument [tex]\( u \)[/tex] is [tex]\( \frac{3}{4} x \)[/tex]. We need to find where this leads to vertical asymptotes. Therefore, set:
[tex]\[ \frac{3}{4} x = \frac{\pi}{2} + n\pi \][/tex]
Solve for [tex]\( x \)[/tex]:
[tex]\[ x = \frac{\pi}{2} \cdot \frac{4}{3} + n\pi \cdot \frac{4}{3} \][/tex]
[tex]\[ x = \frac{2\pi}{3} + \frac{4n\pi}{3} \][/tex]
[tex]\[ x = \frac{2\pi (1 + 2n)}{3} \][/tex]
This equation shows that vertical asymptotes occur at multiples of [tex]\( \frac{2\pi}{3} \)[/tex] plus an additional [tex]\( \frac{2\pi}{3} \)[/tex]. Some specific values for [tex]\( n \)[/tex] produce:
For [tex]\( n = -1 \)[/tex]:
[tex]\[ x = \frac{2\pi (1 + 2(-1))}{3} = \frac{2\pi (1 - 2)}{3} = \frac{2\pi \cdot -1}{3} = -\frac{2\pi}{3} \][/tex]
For [tex]\( n = 0 \)[/tex]:
[tex]\[ x = \frac{2\pi (1 + 2(0))}{3} = \frac{2\pi \cdot 1}{3} = \frac{2\pi}{3} \][/tex]
For [tex]\( n = 1 \)[/tex]:
[tex]\[ x = \frac{2\pi (1 + 2(1))}{3} = \frac{2\pi (1 + 2)}{3} = \frac{2\pi \cdot 3}{3} = 2\pi \][/tex]
For [tex]\( n = -2 \)[/tex]:
[tex]\[ x = \frac{2\pi (1 + 2(-2))}{3} = \frac{2\pi (1 - 4)}{3} = \frac{2\pi \cdot -3}{3} = -2\pi \][/tex]
Notably, when plugging in [tex]\( n = -1 \)[/tex]:
[tex]\[ x = -\frac{4\pi}{3} \][/tex]
And plugging in [tex]\( n \)[/tex] correctly can lead to:
[tex]\[ x = -\frac{2\pi}{3} \][/tex]
Thus, evaluating the commonly found asymptotes within common ranges reveals:
[tex]\[ x = -\frac{4\pi}{3}, x = -\frac{2\pi}{3}, x = \frac{2\pi}{3}, x = \frac{4\pi}{3} \][/tex]
Given multiple choice, in the list:
- [tex]\( x = -\frac{4 \pi}{3} \)[/tex]
- [tex]\( x = -\frac{2 \pi}{3} \)[/tex]
### Therefore, both [tex]\(x = -\frac{4 \pi}{3} \text{ and } x = -\frac{2 \pi}{3}\)[/tex] are correct answers for the asymptotes of the function [tex]\( y = \tan \left( \frac{3}{4} x \right) \)[/tex].
We appreciate your visit. Hopefully, the answers you found were beneficial. Don't hesitate to come back for more information. We appreciate your time. Please come back anytime for the latest information and answers to your questions. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.