At Westonci.ca, we make it easy to get the answers you need from a community of informed and experienced contributors. Get quick and reliable solutions to your questions from a community of seasoned experts on our user-friendly platform. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
To solve for the speed of the current, let's go through the steps systematically.
1. Define the Variables:
- Speed of the boat in still water: [tex]\( 10 \)[/tex] miles per hour
- Distance traveled downstream: [tex]\( 6 \)[/tex] miles
- Distance traveled upstream: [tex]\( 4 \)[/tex] miles
- Speed of the current: [tex]\( x \)[/tex] miles per hour
2. Formulate the Time Equations:
- When traveling downstream, the effective speed of the boat is the speed of the boat in still water plus the speed of the current: [tex]\( 10 + x \)[/tex].
- Time taken to travel downstream [tex]\( t_1 = \frac{6}{10 + x} \)[/tex]
- When traveling upstream, the effective speed of the boat is the speed of the boat in still water minus the speed of the current: [tex]\( 10 - x \)[/tex].
- Time taken to travel upstream [tex]\( t_2 = \frac{4}{10 - x} \)[/tex]
3. Set Up the Rational Equation:
Since the times taken to travel the given distances downstream and upstream are the same, we equate the two times:
[tex]\[ \frac{6}{10 + x} = \frac{4}{10 - x} \][/tex]
4. Solve for [tex]\( x \)[/tex]:
- Cross-multiplying the equation gives:
[tex]\[ 6 \cdot (10 - x) = 4 \cdot (10 + x) \][/tex]
- Simplify and solve for [tex]\( x \)[/tex]:
[tex]\[ 60 - 6x = 40 + 4x \][/tex]
[tex]\[ 60 - 40 = 4x + 6x \][/tex]
[tex]\[ 20 = 10x \][/tex]
[tex]\[ x = 2 \][/tex]
Therefore, the speed of the current is [tex]\( \boxed{2} \)[/tex] miles per hour.
1. Define the Variables:
- Speed of the boat in still water: [tex]\( 10 \)[/tex] miles per hour
- Distance traveled downstream: [tex]\( 6 \)[/tex] miles
- Distance traveled upstream: [tex]\( 4 \)[/tex] miles
- Speed of the current: [tex]\( x \)[/tex] miles per hour
2. Formulate the Time Equations:
- When traveling downstream, the effective speed of the boat is the speed of the boat in still water plus the speed of the current: [tex]\( 10 + x \)[/tex].
- Time taken to travel downstream [tex]\( t_1 = \frac{6}{10 + x} \)[/tex]
- When traveling upstream, the effective speed of the boat is the speed of the boat in still water minus the speed of the current: [tex]\( 10 - x \)[/tex].
- Time taken to travel upstream [tex]\( t_2 = \frac{4}{10 - x} \)[/tex]
3. Set Up the Rational Equation:
Since the times taken to travel the given distances downstream and upstream are the same, we equate the two times:
[tex]\[ \frac{6}{10 + x} = \frac{4}{10 - x} \][/tex]
4. Solve for [tex]\( x \)[/tex]:
- Cross-multiplying the equation gives:
[tex]\[ 6 \cdot (10 - x) = 4 \cdot (10 + x) \][/tex]
- Simplify and solve for [tex]\( x \)[/tex]:
[tex]\[ 60 - 6x = 40 + 4x \][/tex]
[tex]\[ 60 - 40 = 4x + 6x \][/tex]
[tex]\[ 20 = 10x \][/tex]
[tex]\[ x = 2 \][/tex]
Therefore, the speed of the current is [tex]\( \boxed{2} \)[/tex] miles per hour.
We appreciate your time. Please come back anytime for the latest information and answers to your questions. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.