Discover the answers to your questions at Westonci.ca, where experts share their knowledge and insights with you. Experience the ease of finding quick and accurate answers to your questions from professionals on our platform. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
To solve for the speed of the current, let's go through the steps systematically.
1. Define the Variables:
- Speed of the boat in still water: [tex]\( 10 \)[/tex] miles per hour
- Distance traveled downstream: [tex]\( 6 \)[/tex] miles
- Distance traveled upstream: [tex]\( 4 \)[/tex] miles
- Speed of the current: [tex]\( x \)[/tex] miles per hour
2. Formulate the Time Equations:
- When traveling downstream, the effective speed of the boat is the speed of the boat in still water plus the speed of the current: [tex]\( 10 + x \)[/tex].
- Time taken to travel downstream [tex]\( t_1 = \frac{6}{10 + x} \)[/tex]
- When traveling upstream, the effective speed of the boat is the speed of the boat in still water minus the speed of the current: [tex]\( 10 - x \)[/tex].
- Time taken to travel upstream [tex]\( t_2 = \frac{4}{10 - x} \)[/tex]
3. Set Up the Rational Equation:
Since the times taken to travel the given distances downstream and upstream are the same, we equate the two times:
[tex]\[ \frac{6}{10 + x} = \frac{4}{10 - x} \][/tex]
4. Solve for [tex]\( x \)[/tex]:
- Cross-multiplying the equation gives:
[tex]\[ 6 \cdot (10 - x) = 4 \cdot (10 + x) \][/tex]
- Simplify and solve for [tex]\( x \)[/tex]:
[tex]\[ 60 - 6x = 40 + 4x \][/tex]
[tex]\[ 60 - 40 = 4x + 6x \][/tex]
[tex]\[ 20 = 10x \][/tex]
[tex]\[ x = 2 \][/tex]
Therefore, the speed of the current is [tex]\( \boxed{2} \)[/tex] miles per hour.
1. Define the Variables:
- Speed of the boat in still water: [tex]\( 10 \)[/tex] miles per hour
- Distance traveled downstream: [tex]\( 6 \)[/tex] miles
- Distance traveled upstream: [tex]\( 4 \)[/tex] miles
- Speed of the current: [tex]\( x \)[/tex] miles per hour
2. Formulate the Time Equations:
- When traveling downstream, the effective speed of the boat is the speed of the boat in still water plus the speed of the current: [tex]\( 10 + x \)[/tex].
- Time taken to travel downstream [tex]\( t_1 = \frac{6}{10 + x} \)[/tex]
- When traveling upstream, the effective speed of the boat is the speed of the boat in still water minus the speed of the current: [tex]\( 10 - x \)[/tex].
- Time taken to travel upstream [tex]\( t_2 = \frac{4}{10 - x} \)[/tex]
3. Set Up the Rational Equation:
Since the times taken to travel the given distances downstream and upstream are the same, we equate the two times:
[tex]\[ \frac{6}{10 + x} = \frac{4}{10 - x} \][/tex]
4. Solve for [tex]\( x \)[/tex]:
- Cross-multiplying the equation gives:
[tex]\[ 6 \cdot (10 - x) = 4 \cdot (10 + x) \][/tex]
- Simplify and solve for [tex]\( x \)[/tex]:
[tex]\[ 60 - 6x = 40 + 4x \][/tex]
[tex]\[ 60 - 40 = 4x + 6x \][/tex]
[tex]\[ 20 = 10x \][/tex]
[tex]\[ x = 2 \][/tex]
Therefore, the speed of the current is [tex]\( \boxed{2} \)[/tex] miles per hour.
Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. We hope this was helpful. Please come back whenever you need more information or answers to your queries. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.