At Westonci.ca, we make it easy to get the answers you need from a community of informed and experienced contributors. Get immediate answers to your questions from a wide network of experienced professionals on our Q&A platform. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
Let's analyze and graph the function
[tex]\[ h(x) = \frac{2x - 8}{x + 3} \][/tex]
### Step 1: Identify the Asymptotes
#### Vertical Asymptote
A vertical asymptote occurs where the denominator is equal to zero, which makes the function undefined. Set the denominator equal to zero:
[tex]\[ x + 3 = 0 \][/tex]
[tex]\[ x = -3 \][/tex]
So, there is a vertical asymptote at [tex]\( x = -3 \)[/tex].
#### Horizontal Asymptote
To determine the horizontal asymptote, compare the degrees of the numerator and denominator. Both the numerator (2x - 8) and the denominator (x + 3) are linear (degree 1). When the degrees are the same, the horizontal asymptote is found by dividing the leading coefficients:
[tex]\[ y = \frac{\text{leading coefficient of numerator}}{\text{leading coefficient of denominator}} = \frac{2}{1} = 2 \][/tex]
So, there is a horizontal asymptote at [tex]\( y = 2 \)[/tex].
### Step 2: Calculate Function Values at Specific Points
To understand the behavior of the function around the vertical asymptote and to plot some points on the graph, let's choose several [tex]\( x \)[/tex]-values:
- [tex]\( x = -5 \)[/tex]
- [tex]\( x = -4 \)[/tex]
- [tex]\( x = -3.5 \)[/tex] (approaching vertical asymptote from the left)
- [tex]\( x = -2 \)[/tex] (approaching vertical asymptote from the right)
- [tex]\( x = 0 \)[/tex]
- [tex]\( x = 2 \)[/tex]
- [tex]\( x = 5 \)[/tex]
Compute the function values for these [tex]\( x \)[/tex]-values:
[tex]\[ \begin{aligned} h(-5) &= \frac{2(-5) - 8}{-5 + 3} = \frac{-10 - 8}{-2} = \frac{-18}{-2} = 9.0, \\ h(-4) &= \frac{2(-4) - 8}{-4 + 3} = \frac{-8 - 8}{-1} = \frac{-16}{-1} = 16.0, \\ h(-3.5) &= \frac{2(-3.5) - 8}{-3.5 + 3} = \frac{-7 - 8}{-0.5} = \frac{-15}{-0.5} = 30.0, \\ h(-2) &= \frac{2(-2) - 8}{-2 + 3} = \frac{-4 - 8}{1} = \frac{-12}{1} = -12.0, \\ h(0) &= \frac{2(0) - 8}{0 + 3} = \frac{-8}{3} \approx -2.67, \\ h(2) &= \frac{2(2) - 8}{2 + 3} = \frac{4 - 8}{5} = \frac{-4}{5} = -0.8, \\ h(5) &= \frac{2(5) - 8}{5 + 3} = \frac{10 - 8}{8} = \frac{2}{8} = 0.25. \end{aligned} \][/tex]
### Step 3: Plot the Points and Asymptotes
1. Plot the points:
- [tex]\( (-5, 9.0) \)[/tex]
- [tex]\( (-4, 16.0) \)[/tex]
- [tex]\( (-3.5, 30.0) \)[/tex]
- [tex]\( (-2, -12.0) \)[/tex]
- [tex]\( (0, -2.67) \)[/tex]
- [tex]\( (2, -0.8) \)[/tex]
- [tex]\( (5, 0.25) \)[/tex]
2. Draw the vertical asymptote: Draw a dashed line at [tex]\( x = -3 \)[/tex].
3. Draw the horizontal asymptote: Draw a dashed line at [tex]\( y = 2 \)[/tex].
4. Sketch the graph: Based on the points calculated and asymptotes, sketch the curve, making sure to approach the vertical asymptote without crossing it and to level out towards the horizontal asymptote as [tex]\( x \)[/tex] becomes very large or very small.
### Graph Summary
- Vertical Asymptote: [tex]\( x = -3 \)[/tex]
- Horizontal Asymptote: [tex]\( y = 2 \)[/tex]
- Points: [tex]\( (-5, 9.0), (-4, 16.0), (-3.5, 30.0), (-2, -12.0), (0, -2.67), (2, -0.8), (5, 0.25) \)[/tex]
By following these calculations and plotting accordingly, you should have an accurate graph of the function [tex]\( h(x) = \frac{2x-8}{x+3} \)[/tex].
[tex]\[ h(x) = \frac{2x - 8}{x + 3} \][/tex]
### Step 1: Identify the Asymptotes
#### Vertical Asymptote
A vertical asymptote occurs where the denominator is equal to zero, which makes the function undefined. Set the denominator equal to zero:
[tex]\[ x + 3 = 0 \][/tex]
[tex]\[ x = -3 \][/tex]
So, there is a vertical asymptote at [tex]\( x = -3 \)[/tex].
#### Horizontal Asymptote
To determine the horizontal asymptote, compare the degrees of the numerator and denominator. Both the numerator (2x - 8) and the denominator (x + 3) are linear (degree 1). When the degrees are the same, the horizontal asymptote is found by dividing the leading coefficients:
[tex]\[ y = \frac{\text{leading coefficient of numerator}}{\text{leading coefficient of denominator}} = \frac{2}{1} = 2 \][/tex]
So, there is a horizontal asymptote at [tex]\( y = 2 \)[/tex].
### Step 2: Calculate Function Values at Specific Points
To understand the behavior of the function around the vertical asymptote and to plot some points on the graph, let's choose several [tex]\( x \)[/tex]-values:
- [tex]\( x = -5 \)[/tex]
- [tex]\( x = -4 \)[/tex]
- [tex]\( x = -3.5 \)[/tex] (approaching vertical asymptote from the left)
- [tex]\( x = -2 \)[/tex] (approaching vertical asymptote from the right)
- [tex]\( x = 0 \)[/tex]
- [tex]\( x = 2 \)[/tex]
- [tex]\( x = 5 \)[/tex]
Compute the function values for these [tex]\( x \)[/tex]-values:
[tex]\[ \begin{aligned} h(-5) &= \frac{2(-5) - 8}{-5 + 3} = \frac{-10 - 8}{-2} = \frac{-18}{-2} = 9.0, \\ h(-4) &= \frac{2(-4) - 8}{-4 + 3} = \frac{-8 - 8}{-1} = \frac{-16}{-1} = 16.0, \\ h(-3.5) &= \frac{2(-3.5) - 8}{-3.5 + 3} = \frac{-7 - 8}{-0.5} = \frac{-15}{-0.5} = 30.0, \\ h(-2) &= \frac{2(-2) - 8}{-2 + 3} = \frac{-4 - 8}{1} = \frac{-12}{1} = -12.0, \\ h(0) &= \frac{2(0) - 8}{0 + 3} = \frac{-8}{3} \approx -2.67, \\ h(2) &= \frac{2(2) - 8}{2 + 3} = \frac{4 - 8}{5} = \frac{-4}{5} = -0.8, \\ h(5) &= \frac{2(5) - 8}{5 + 3} = \frac{10 - 8}{8} = \frac{2}{8} = 0.25. \end{aligned} \][/tex]
### Step 3: Plot the Points and Asymptotes
1. Plot the points:
- [tex]\( (-5, 9.0) \)[/tex]
- [tex]\( (-4, 16.0) \)[/tex]
- [tex]\( (-3.5, 30.0) \)[/tex]
- [tex]\( (-2, -12.0) \)[/tex]
- [tex]\( (0, -2.67) \)[/tex]
- [tex]\( (2, -0.8) \)[/tex]
- [tex]\( (5, 0.25) \)[/tex]
2. Draw the vertical asymptote: Draw a dashed line at [tex]\( x = -3 \)[/tex].
3. Draw the horizontal asymptote: Draw a dashed line at [tex]\( y = 2 \)[/tex].
4. Sketch the graph: Based on the points calculated and asymptotes, sketch the curve, making sure to approach the vertical asymptote without crossing it and to level out towards the horizontal asymptote as [tex]\( x \)[/tex] becomes very large or very small.
### Graph Summary
- Vertical Asymptote: [tex]\( x = -3 \)[/tex]
- Horizontal Asymptote: [tex]\( y = 2 \)[/tex]
- Points: [tex]\( (-5, 9.0), (-4, 16.0), (-3.5, 30.0), (-2, -12.0), (0, -2.67), (2, -0.8), (5, 0.25) \)[/tex]
By following these calculations and plotting accordingly, you should have an accurate graph of the function [tex]\( h(x) = \frac{2x-8}{x+3} \)[/tex].
We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.