Westonci.ca is the best place to get answers to your questions, provided by a community of experienced and knowledgeable experts. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
To graph the function [tex]\( c(x) = \frac{7}{x^2 - 9} \)[/tex], we need to consider several key points, including the vertical asymptotes, horizontal asymptotes, and the behavior of the function around these asymptotes. Let's go step-by-step.
### Step 1: Identify the Vertical Asymptotes
Vertical asymptotes occur where the denominator of the function is zero and the numerator is non-zero. Set the denominator equal to zero:
[tex]\[ x^2 - 9 = 0 \][/tex]
[tex]\[ x^2 = 9 \][/tex]
[tex]\[ x = \pm 3 \][/tex]
So, the vertical asymptotes are at [tex]\( x = 3 \)[/tex] and [tex]\( x = -3 \)[/tex].
### Step 2: Identify the Horizontal Asymptote
To find the horizontal asymptote, we analyze the behavior of the function as [tex]\( x \)[/tex] approaches [tex]\(\infty\)[/tex] or [tex]\(-\infty\)[/tex]. As [tex]\( x \to \pm \infty \)[/tex], the term [tex]\( x^2 \)[/tex] grows much larger than 9, so:
[tex]\[ c(x) = \frac{7}{x^2 - 9} \approx \frac{7}{x^2} \][/tex]
Thus, as [tex]\( x \to \pm \infty \)[/tex], [tex]\( c(x) \to 0 \)[/tex]. The horizontal asymptote is:
[tex]\[ y = 0 \][/tex]
### Step 3: Plot Points Around Asymptotes
Let's calculate values of [tex]\( c(x) \)[/tex] for points around the vertical asymptotes:
#### Points to the left of [tex]\( x = -3 \)[/tex]:
- [tex]\( x = -4 \)[/tex]:
[tex]\[ c(-4) = \frac{7}{(-4)^2 - 9} = \frac{7}{16 - 9} = \frac{7}{7} = 1 \][/tex]
- [tex]\( x = -5 \)[/tex]:
[tex]\[ c(-5) = \frac{7}{(-5)^2 - 9} = \frac{7}{25 - 9} = \frac{7}{16} \approx 0.4375 \][/tex]
#### Points to the right of [tex]\( x = -3 \)[/tex] but to the left of [tex]\( x = 3 \)[/tex]:
- [tex]\( x = -2 \)[/tex]:
[tex]\[ c(-2) = \frac{7}{(-2)^2 - 9} = \frac{7}{4 - 9} = \frac{7}{-5} = -1.4 \][/tex]
- [tex]\( x = 0 \)[/tex]:
[tex]\[ c(0) = \frac{7}{0^2 - 9} = \frac{7}{-9} = -0.777\][/tex]
#### Points to the right of [tex]\( x = 3 \)[/tex]:
- [tex]\( x = 4 \)[/tex]:
[tex]\[ c(4) = \frac{7}{4^2 - 9} = \frac{7}{16 - 9} = \frac{7}{7} = 1 \][/tex]
- [tex]\( x = 5 \)[/tex]:
[tex]\[ c(5) = \frac{7}{5^2 - 9} = \frac{7}{25 - 9} = \frac{7}{16} \approx 0.4375 \][/tex]
### Step 4: Sketch the Graph
Now that we have key points and asymptotes, we are ready to sketch the graph.
1. Draw vertical lines at [tex]\( x = 3 \)[/tex] and [tex]\( x = -3 \)[/tex] to represent the vertical asymptotes.
2. Draw a horizontal line along [tex]\( y = 0 \)[/tex] to represent the horizontal asymptote.
3. Plot the calculated points:
- [tex]\((-5, 0.4375)\)[/tex], [tex]\((-4, 1)\)[/tex] to the left of [tex]\( x = -3 \)[/tex].
- [tex]\((-2, -1.4)\)[/tex], [tex]\((0, -0.777)\)[/tex] between [tex]\( x = -3 \)[/tex] and [tex]\( x = 3 \)[/tex].
- [tex]\((4, 1)\)[/tex], [tex]\((5, 0.4375)\)[/tex] to the right of [tex]\( x = 3 \)[/tex].
4. Connect the points with smooth curves, noting that the function approaches the asymptotes as it gets closer to [tex]\( x = \pm 3 \)[/tex] and [tex]\( y = 0 \)[/tex].
Your graph should show that [tex]\( c(x) \)[/tex] grows large positively or negatively near the vertical asymptotes and approaches zero as [tex]\( x \rightarrow \pm \infty \)[/tex].
### Step 1: Identify the Vertical Asymptotes
Vertical asymptotes occur where the denominator of the function is zero and the numerator is non-zero. Set the denominator equal to zero:
[tex]\[ x^2 - 9 = 0 \][/tex]
[tex]\[ x^2 = 9 \][/tex]
[tex]\[ x = \pm 3 \][/tex]
So, the vertical asymptotes are at [tex]\( x = 3 \)[/tex] and [tex]\( x = -3 \)[/tex].
### Step 2: Identify the Horizontal Asymptote
To find the horizontal asymptote, we analyze the behavior of the function as [tex]\( x \)[/tex] approaches [tex]\(\infty\)[/tex] or [tex]\(-\infty\)[/tex]. As [tex]\( x \to \pm \infty \)[/tex], the term [tex]\( x^2 \)[/tex] grows much larger than 9, so:
[tex]\[ c(x) = \frac{7}{x^2 - 9} \approx \frac{7}{x^2} \][/tex]
Thus, as [tex]\( x \to \pm \infty \)[/tex], [tex]\( c(x) \to 0 \)[/tex]. The horizontal asymptote is:
[tex]\[ y = 0 \][/tex]
### Step 3: Plot Points Around Asymptotes
Let's calculate values of [tex]\( c(x) \)[/tex] for points around the vertical asymptotes:
#### Points to the left of [tex]\( x = -3 \)[/tex]:
- [tex]\( x = -4 \)[/tex]:
[tex]\[ c(-4) = \frac{7}{(-4)^2 - 9} = \frac{7}{16 - 9} = \frac{7}{7} = 1 \][/tex]
- [tex]\( x = -5 \)[/tex]:
[tex]\[ c(-5) = \frac{7}{(-5)^2 - 9} = \frac{7}{25 - 9} = \frac{7}{16} \approx 0.4375 \][/tex]
#### Points to the right of [tex]\( x = -3 \)[/tex] but to the left of [tex]\( x = 3 \)[/tex]:
- [tex]\( x = -2 \)[/tex]:
[tex]\[ c(-2) = \frac{7}{(-2)^2 - 9} = \frac{7}{4 - 9} = \frac{7}{-5} = -1.4 \][/tex]
- [tex]\( x = 0 \)[/tex]:
[tex]\[ c(0) = \frac{7}{0^2 - 9} = \frac{7}{-9} = -0.777\][/tex]
#### Points to the right of [tex]\( x = 3 \)[/tex]:
- [tex]\( x = 4 \)[/tex]:
[tex]\[ c(4) = \frac{7}{4^2 - 9} = \frac{7}{16 - 9} = \frac{7}{7} = 1 \][/tex]
- [tex]\( x = 5 \)[/tex]:
[tex]\[ c(5) = \frac{7}{5^2 - 9} = \frac{7}{25 - 9} = \frac{7}{16} \approx 0.4375 \][/tex]
### Step 4: Sketch the Graph
Now that we have key points and asymptotes, we are ready to sketch the graph.
1. Draw vertical lines at [tex]\( x = 3 \)[/tex] and [tex]\( x = -3 \)[/tex] to represent the vertical asymptotes.
2. Draw a horizontal line along [tex]\( y = 0 \)[/tex] to represent the horizontal asymptote.
3. Plot the calculated points:
- [tex]\((-5, 0.4375)\)[/tex], [tex]\((-4, 1)\)[/tex] to the left of [tex]\( x = -3 \)[/tex].
- [tex]\((-2, -1.4)\)[/tex], [tex]\((0, -0.777)\)[/tex] between [tex]\( x = -3 \)[/tex] and [tex]\( x = 3 \)[/tex].
- [tex]\((4, 1)\)[/tex], [tex]\((5, 0.4375)\)[/tex] to the right of [tex]\( x = 3 \)[/tex].
4. Connect the points with smooth curves, noting that the function approaches the asymptotes as it gets closer to [tex]\( x = \pm 3 \)[/tex] and [tex]\( y = 0 \)[/tex].
Your graph should show that [tex]\( c(x) \)[/tex] grows large positively or negatively near the vertical asymptotes and approaches zero as [tex]\( x \rightarrow \pm \infty \)[/tex].
We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.