Looking for reliable answers? Westonci.ca is the ultimate Q&A platform where experts share their knowledge on various topics. Get quick and reliable solutions to your questions from a community of experienced experts on our platform. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
To compare the graph of [tex]\( G(x) = \frac{4}{5} x^2 \)[/tex] with the graph of [tex]\( F(x) = x^2 \)[/tex], let's analyze how the function [tex]\( G(x) \)[/tex] transforms [tex]\( F(x) \)[/tex].
1. Understanding [tex]\(F(x)\)[/tex]:
- [tex]\( F(x) = x^2 \)[/tex]
- This is a standard parabola that opens upward with its vertex at the origin (0, 0).
2. Understanding [tex]\(G(x)\)[/tex]:
- [tex]\( G(x) = \frac{4}{5} x^2 \)[/tex]
- This transformation involves multiplying the function [tex]\( x^2 \)[/tex] by a coefficient, [tex]\(\frac{4}{5}\)[/tex].
3. Effect of the Coefficient [tex]\(\frac{4}{5}\)[/tex]:
- A coefficient less than 1 but greater than 0 in front of [tex]\( x^2 \)[/tex] compresses the graph vertically.
- This means that for any given [tex]\( x \)[/tex], the value of [tex]\( G(x) \)[/tex] will be [tex]\(\frac{4}{5}\)[/tex] times the value of [tex]\( F(x) \)[/tex], making [tex]\( G(x) \)[/tex] shorter compared to [tex]\( F(x) \)[/tex].
4. Comparison Statements:
- A. The graph of [tex]\( G(x) \)[/tex] is the graph of [tex]\( F(x) \)[/tex] compressed vertically and flipped over the [tex]\( x \)[/tex]-axis.
- This is incorrect because there is no negative coefficient indicating a flip over the [tex]\( x \)[/tex]-axis.
- B. The graph of [tex]\( G(x) \)[/tex] is the graph of [tex]\( F(x) \)[/tex] stretched vertically.
- This is incorrect because a coefficient less than 1 indicates a compression, not a stretch.
- C. The graph of [tex]\( G(x) \)[/tex] is the graph of [tex]\( F(x) \)[/tex] stretched vertically and flipped over the [tex]\( x \)[/tex]-axis.
- This is incorrect for the same reasons as options A and B.
- D. The graph of [tex]\( G(x) \)[/tex] is the graph of [tex]\( F(x) \)[/tex] compressed vertically.
- This is correct because a coefficient of [tex]\(\frac{4}{5}\)[/tex] in front of [tex]\( x^2 \)[/tex] ensures a vertical compression.
Thus, the best statement that compares the graphs is:
D. The graph of [tex]\( G(x) \)[/tex] is the graph of [tex]\( F(x) \)[/tex] compressed vertically.
1. Understanding [tex]\(F(x)\)[/tex]:
- [tex]\( F(x) = x^2 \)[/tex]
- This is a standard parabola that opens upward with its vertex at the origin (0, 0).
2. Understanding [tex]\(G(x)\)[/tex]:
- [tex]\( G(x) = \frac{4}{5} x^2 \)[/tex]
- This transformation involves multiplying the function [tex]\( x^2 \)[/tex] by a coefficient, [tex]\(\frac{4}{5}\)[/tex].
3. Effect of the Coefficient [tex]\(\frac{4}{5}\)[/tex]:
- A coefficient less than 1 but greater than 0 in front of [tex]\( x^2 \)[/tex] compresses the graph vertically.
- This means that for any given [tex]\( x \)[/tex], the value of [tex]\( G(x) \)[/tex] will be [tex]\(\frac{4}{5}\)[/tex] times the value of [tex]\( F(x) \)[/tex], making [tex]\( G(x) \)[/tex] shorter compared to [tex]\( F(x) \)[/tex].
4. Comparison Statements:
- A. The graph of [tex]\( G(x) \)[/tex] is the graph of [tex]\( F(x) \)[/tex] compressed vertically and flipped over the [tex]\( x \)[/tex]-axis.
- This is incorrect because there is no negative coefficient indicating a flip over the [tex]\( x \)[/tex]-axis.
- B. The graph of [tex]\( G(x) \)[/tex] is the graph of [tex]\( F(x) \)[/tex] stretched vertically.
- This is incorrect because a coefficient less than 1 indicates a compression, not a stretch.
- C. The graph of [tex]\( G(x) \)[/tex] is the graph of [tex]\( F(x) \)[/tex] stretched vertically and flipped over the [tex]\( x \)[/tex]-axis.
- This is incorrect for the same reasons as options A and B.
- D. The graph of [tex]\( G(x) \)[/tex] is the graph of [tex]\( F(x) \)[/tex] compressed vertically.
- This is correct because a coefficient of [tex]\(\frac{4}{5}\)[/tex] in front of [tex]\( x^2 \)[/tex] ensures a vertical compression.
Thus, the best statement that compares the graphs is:
D. The graph of [tex]\( G(x) \)[/tex] is the graph of [tex]\( F(x) \)[/tex] compressed vertically.
Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.