Looking for reliable answers? Westonci.ca is the ultimate Q&A platform where experts share their knowledge on various topics. Explore our Q&A platform to find in-depth answers from a wide range of experts in different fields. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
Of course! Let's go through the solution step by step.
### Step 1: Calculate the Applied Force
We are given:
- Mass, [tex]\( m_1 = 16 \)[/tex] kg
- Acceleration, [tex]\( a_1 = 3 \)[/tex] m/s²
We need to calculate the applied force using Newton's second law of motion, which is given by:
[tex]\[ F = m \times a \][/tex]
Substituting the known values:
[tex]\[ F = 16 \, \text{kg} \times 3 \, \text{m/s}^2 \][/tex]
[tex]\[ F = 48 \, \text{N} \][/tex]
So, the applied force is [tex]\( 48 \)[/tex] Newtons (N).
### Step 2: Calculate the Acceleration for the Second Object
We are now given:
- The applied force, [tex]\( F = 48 \)[/tex] N (which we just calculated)
- The mass of the second object, [tex]\( m_2 = 24 \)[/tex] kg
We need to calculate the acceleration using the same applied force on the new mass. Again, using Newton's second law:
[tex]\[ F = m \times a \][/tex]
Rearranging for acceleration [tex]\( a \)[/tex]:
[tex]\[ a = \frac{F}{m} \][/tex]
Substituting the known values:
[tex]\[ a_2 = \frac{48 \, \text{N}}{24 \, \text{kg}} \][/tex]
[tex]\[ a_2 = 2 \, \text{m/s}^2 \][/tex]
So, the acceleration of the second object with mass [tex]\( 24 \)[/tex] kg under the same applied force is [tex]\( 2 \)[/tex] m/s².
### Summary
- The applied force on the initial object is [tex]\( 48 \)[/tex] N.
- When the same force is applied to a second object of mass [tex]\( 24 \)[/tex] kg, the resulting acceleration is [tex]\( 2 \)[/tex] m/s².
### Step 1: Calculate the Applied Force
We are given:
- Mass, [tex]\( m_1 = 16 \)[/tex] kg
- Acceleration, [tex]\( a_1 = 3 \)[/tex] m/s²
We need to calculate the applied force using Newton's second law of motion, which is given by:
[tex]\[ F = m \times a \][/tex]
Substituting the known values:
[tex]\[ F = 16 \, \text{kg} \times 3 \, \text{m/s}^2 \][/tex]
[tex]\[ F = 48 \, \text{N} \][/tex]
So, the applied force is [tex]\( 48 \)[/tex] Newtons (N).
### Step 2: Calculate the Acceleration for the Second Object
We are now given:
- The applied force, [tex]\( F = 48 \)[/tex] N (which we just calculated)
- The mass of the second object, [tex]\( m_2 = 24 \)[/tex] kg
We need to calculate the acceleration using the same applied force on the new mass. Again, using Newton's second law:
[tex]\[ F = m \times a \][/tex]
Rearranging for acceleration [tex]\( a \)[/tex]:
[tex]\[ a = \frac{F}{m} \][/tex]
Substituting the known values:
[tex]\[ a_2 = \frac{48 \, \text{N}}{24 \, \text{kg}} \][/tex]
[tex]\[ a_2 = 2 \, \text{m/s}^2 \][/tex]
So, the acceleration of the second object with mass [tex]\( 24 \)[/tex] kg under the same applied force is [tex]\( 2 \)[/tex] m/s².
### Summary
- The applied force on the initial object is [tex]\( 48 \)[/tex] N.
- When the same force is applied to a second object of mass [tex]\( 24 \)[/tex] kg, the resulting acceleration is [tex]\( 2 \)[/tex] m/s².
Visit us again for up-to-date and reliable answers. We're always ready to assist you with your informational needs. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.