Looking for trustworthy answers? Westonci.ca is the ultimate Q&A platform where experts share their knowledge on various topics. Get immediate and reliable solutions to your questions from a community of experienced experts on our Q&A platform. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.

If the dimensions of a solid proportionally increase by a scale factor of [tex]\frac{5}{2}[/tex], by what factor does the surface area increase?

A. [tex]\frac{5}{2}[/tex]
B. [tex]\frac{5}{4}[/tex]
C. [tex]\frac{25}{2}[/tex]
D. [tex]\frac{25}{4}[/tex]


Sagot :

If the dimensions of a solid proportionally increase by a scale factor of [tex]\(\frac{5}{2}\)[/tex], we need to determine by what factor the surface area increases.

To solve this, we should recall the relationship between the scale factor of dimensions and the scale factor of surface area. The surface area of a solid scales with the square of the linear scale factor. Let's break down the steps:

1. Identify the given scale factor: The linear scale factor given is [tex]\(\frac{5}{2}\)[/tex].

2. Calculate the factor by which the surface area increases: Since surface area is proportional to the square of the linear scale factor, we square [tex]\(\frac{5}{2}\)[/tex].

[tex]\[ \left(\frac{5}{2}\right)^2 = \frac{5}{2} \times \frac{5}{2} = \frac{25}{4} \][/tex]

Thus, the surface area increases by a factor of [tex]\(\frac{25}{4}\)[/tex].

Therefore, the correct answer is [tex]\(\frac{25}{4}\)[/tex].