Discover a world of knowledge at Westonci.ca, where experts and enthusiasts come together to answer your questions. Connect with a community of experts ready to help you find solutions to your questions quickly and accurately. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
To find the minimum value of the objective function [tex]\( C = 10x + 26y \)[/tex] subject to the given constraints:
[tex]\[ \begin{array}{l} x + y \leq 6 \\ 5x + y \geq 10 \\ x + 5y \geq 14 \\ x \geq 0 \\ y \geq 0 \end{array} \][/tex]
we will follow the steps of linear programming:
1. Formulate the problem:
The objective is to minimize [tex]\( C = 10x + 26y \)[/tex].
2. Identify the constraints:
[tex]\[ \begin{array}{l} x + y \leq 6 \quad \text{(Constraint 1)} \\ 5x + y \geq 10 \quad \text{(Constraint 2)} \\ x + 5y \geq 14 \quad \text{(Constraint 3)} \\ x \geq 0 \quad \text{(Non-negativity)} \\ y \geq 0 \quad \text{(Non-negativity)} \end{array} \][/tex]
3. Find the feasible region:
- Constraint 1: [tex]\( x + y = 6 \)[/tex]
- Constraint 2: [tex]\( 5x + y = 10 \)[/tex]
- Constraint 3: [tex]\( x + 5y = 14 \)[/tex]
After transforming these inequalities into equations, these constraints define half-planes. The feasible region is the intersection of these half-planes along with the non-negativity constraints.
4. Determine the corner points:
Identify the intersections of the constraints in the feasible region. Solving these intersections systematically:
- Intersection of [tex]\( x + y = 6 \)[/tex] and [tex]\( 5x + y = 10 \)[/tex]:
[tex]\[ \begin{cases} x + y = 6 \\ 5x + y = 10 \end{cases} \][/tex]
Subtract the first equation from the second equation:
[tex]\[ 4x = 4 \implies x = 1 \\ y = 6 - x = 5 \][/tex]
Intersection point: [tex]\( (1, 5) \)[/tex]
- Intersection of [tex]\( x + y = 6 \)[/tex] and [tex]\( x + 5y = 14 \)[/tex]:
[tex]\[ \begin{cases} x + y = 6 \\ x + 5y = 14 \end{cases} \][/tex]
Subtract the first equation from the second equation:
[tex]\[ 4y = 8 \implies y = 2 \\ x = 6 - y = 4 \][/tex]
Intersection point: [tex]\( (4, 2) \)[/tex]
- Intersection of [tex]\( 5x + y = 10 \)[/tex] and [tex]\( x + 5y = 14 \)[/tex]:
[tex]\[ \begin{cases} 5x + y = 10 \\ x + 5y = 14 \end{cases} \][/tex]
Multiply the first equation by 5:
[tex]\[ 25x + 5y = 50 \\ x + 5y = 14 \][/tex]
Subtract the second equation from this:
[tex]\[ 24x = 36 \implies x = 1.5 \\ y = (10 - 5x) = 2.5 \][/tex]
Intersection point: [tex]\( (1.5, 2.5) \)[/tex]
5. Evaluate the objective function at each corner point:
[tex]\[ C = 10x + 26y \][/tex]
- At [tex]\( (1, 5) \)[/tex]:
[tex]\[ C = 10(1) + 26(5) = 10 + 130 = 140 \][/tex]
- At [tex]\( (4, 2) \)[/tex]:
[tex]\[ C = 10(4) + 26(2) = 40 + 52 = 92 \][/tex]
- At [tex]\( (1.5, 2.5) \)[/tex]:
[tex]\[ C = 10(1.5) + 26(2.5) = 15 + 65 = 80 \][/tex]
6. Conclusion:
The minimum value of [tex]\( C = 10x + 26y \)[/tex] subject to the given constraints is found at the point [tex]\( (1.5, 2.5) \)[/tex].
Therefore, the minimum value of [tex]\( C \)[/tex] is:
[tex]\[ \boxed{80} \][/tex]
[tex]\[ \begin{array}{l} x + y \leq 6 \\ 5x + y \geq 10 \\ x + 5y \geq 14 \\ x \geq 0 \\ y \geq 0 \end{array} \][/tex]
we will follow the steps of linear programming:
1. Formulate the problem:
The objective is to minimize [tex]\( C = 10x + 26y \)[/tex].
2. Identify the constraints:
[tex]\[ \begin{array}{l} x + y \leq 6 \quad \text{(Constraint 1)} \\ 5x + y \geq 10 \quad \text{(Constraint 2)} \\ x + 5y \geq 14 \quad \text{(Constraint 3)} \\ x \geq 0 \quad \text{(Non-negativity)} \\ y \geq 0 \quad \text{(Non-negativity)} \end{array} \][/tex]
3. Find the feasible region:
- Constraint 1: [tex]\( x + y = 6 \)[/tex]
- Constraint 2: [tex]\( 5x + y = 10 \)[/tex]
- Constraint 3: [tex]\( x + 5y = 14 \)[/tex]
After transforming these inequalities into equations, these constraints define half-planes. The feasible region is the intersection of these half-planes along with the non-negativity constraints.
4. Determine the corner points:
Identify the intersections of the constraints in the feasible region. Solving these intersections systematically:
- Intersection of [tex]\( x + y = 6 \)[/tex] and [tex]\( 5x + y = 10 \)[/tex]:
[tex]\[ \begin{cases} x + y = 6 \\ 5x + y = 10 \end{cases} \][/tex]
Subtract the first equation from the second equation:
[tex]\[ 4x = 4 \implies x = 1 \\ y = 6 - x = 5 \][/tex]
Intersection point: [tex]\( (1, 5) \)[/tex]
- Intersection of [tex]\( x + y = 6 \)[/tex] and [tex]\( x + 5y = 14 \)[/tex]:
[tex]\[ \begin{cases} x + y = 6 \\ x + 5y = 14 \end{cases} \][/tex]
Subtract the first equation from the second equation:
[tex]\[ 4y = 8 \implies y = 2 \\ x = 6 - y = 4 \][/tex]
Intersection point: [tex]\( (4, 2) \)[/tex]
- Intersection of [tex]\( 5x + y = 10 \)[/tex] and [tex]\( x + 5y = 14 \)[/tex]:
[tex]\[ \begin{cases} 5x + y = 10 \\ x + 5y = 14 \end{cases} \][/tex]
Multiply the first equation by 5:
[tex]\[ 25x + 5y = 50 \\ x + 5y = 14 \][/tex]
Subtract the second equation from this:
[tex]\[ 24x = 36 \implies x = 1.5 \\ y = (10 - 5x) = 2.5 \][/tex]
Intersection point: [tex]\( (1.5, 2.5) \)[/tex]
5. Evaluate the objective function at each corner point:
[tex]\[ C = 10x + 26y \][/tex]
- At [tex]\( (1, 5) \)[/tex]:
[tex]\[ C = 10(1) + 26(5) = 10 + 130 = 140 \][/tex]
- At [tex]\( (4, 2) \)[/tex]:
[tex]\[ C = 10(4) + 26(2) = 40 + 52 = 92 \][/tex]
- At [tex]\( (1.5, 2.5) \)[/tex]:
[tex]\[ C = 10(1.5) + 26(2.5) = 15 + 65 = 80 \][/tex]
6. Conclusion:
The minimum value of [tex]\( C = 10x + 26y \)[/tex] subject to the given constraints is found at the point [tex]\( (1.5, 2.5) \)[/tex].
Therefore, the minimum value of [tex]\( C \)[/tex] is:
[tex]\[ \boxed{80} \][/tex]
We appreciate your time. Please come back anytime for the latest information and answers to your questions. We hope this was helpful. Please come back whenever you need more information or answers to your queries. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.