Find the best solutions to your questions at Westonci.ca, the premier Q&A platform with a community of knowledgeable experts. Connect with professionals on our platform to receive accurate answers to your questions quickly and efficiently. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
To find the minimum value of the objective function [tex]\( C = 10x + 26y \)[/tex] subject to the given constraints:
[tex]\[ \begin{array}{l} x + y \leq 6 \\ 5x + y \geq 10 \\ x + 5y \geq 14 \\ x \geq 0 \\ y \geq 0 \end{array} \][/tex]
we will follow the steps of linear programming:
1. Formulate the problem:
The objective is to minimize [tex]\( C = 10x + 26y \)[/tex].
2. Identify the constraints:
[tex]\[ \begin{array}{l} x + y \leq 6 \quad \text{(Constraint 1)} \\ 5x + y \geq 10 \quad \text{(Constraint 2)} \\ x + 5y \geq 14 \quad \text{(Constraint 3)} \\ x \geq 0 \quad \text{(Non-negativity)} \\ y \geq 0 \quad \text{(Non-negativity)} \end{array} \][/tex]
3. Find the feasible region:
- Constraint 1: [tex]\( x + y = 6 \)[/tex]
- Constraint 2: [tex]\( 5x + y = 10 \)[/tex]
- Constraint 3: [tex]\( x + 5y = 14 \)[/tex]
After transforming these inequalities into equations, these constraints define half-planes. The feasible region is the intersection of these half-planes along with the non-negativity constraints.
4. Determine the corner points:
Identify the intersections of the constraints in the feasible region. Solving these intersections systematically:
- Intersection of [tex]\( x + y = 6 \)[/tex] and [tex]\( 5x + y = 10 \)[/tex]:
[tex]\[ \begin{cases} x + y = 6 \\ 5x + y = 10 \end{cases} \][/tex]
Subtract the first equation from the second equation:
[tex]\[ 4x = 4 \implies x = 1 \\ y = 6 - x = 5 \][/tex]
Intersection point: [tex]\( (1, 5) \)[/tex]
- Intersection of [tex]\( x + y = 6 \)[/tex] and [tex]\( x + 5y = 14 \)[/tex]:
[tex]\[ \begin{cases} x + y = 6 \\ x + 5y = 14 \end{cases} \][/tex]
Subtract the first equation from the second equation:
[tex]\[ 4y = 8 \implies y = 2 \\ x = 6 - y = 4 \][/tex]
Intersection point: [tex]\( (4, 2) \)[/tex]
- Intersection of [tex]\( 5x + y = 10 \)[/tex] and [tex]\( x + 5y = 14 \)[/tex]:
[tex]\[ \begin{cases} 5x + y = 10 \\ x + 5y = 14 \end{cases} \][/tex]
Multiply the first equation by 5:
[tex]\[ 25x + 5y = 50 \\ x + 5y = 14 \][/tex]
Subtract the second equation from this:
[tex]\[ 24x = 36 \implies x = 1.5 \\ y = (10 - 5x) = 2.5 \][/tex]
Intersection point: [tex]\( (1.5, 2.5) \)[/tex]
5. Evaluate the objective function at each corner point:
[tex]\[ C = 10x + 26y \][/tex]
- At [tex]\( (1, 5) \)[/tex]:
[tex]\[ C = 10(1) + 26(5) = 10 + 130 = 140 \][/tex]
- At [tex]\( (4, 2) \)[/tex]:
[tex]\[ C = 10(4) + 26(2) = 40 + 52 = 92 \][/tex]
- At [tex]\( (1.5, 2.5) \)[/tex]:
[tex]\[ C = 10(1.5) + 26(2.5) = 15 + 65 = 80 \][/tex]
6. Conclusion:
The minimum value of [tex]\( C = 10x + 26y \)[/tex] subject to the given constraints is found at the point [tex]\( (1.5, 2.5) \)[/tex].
Therefore, the minimum value of [tex]\( C \)[/tex] is:
[tex]\[ \boxed{80} \][/tex]
[tex]\[ \begin{array}{l} x + y \leq 6 \\ 5x + y \geq 10 \\ x + 5y \geq 14 \\ x \geq 0 \\ y \geq 0 \end{array} \][/tex]
we will follow the steps of linear programming:
1. Formulate the problem:
The objective is to minimize [tex]\( C = 10x + 26y \)[/tex].
2. Identify the constraints:
[tex]\[ \begin{array}{l} x + y \leq 6 \quad \text{(Constraint 1)} \\ 5x + y \geq 10 \quad \text{(Constraint 2)} \\ x + 5y \geq 14 \quad \text{(Constraint 3)} \\ x \geq 0 \quad \text{(Non-negativity)} \\ y \geq 0 \quad \text{(Non-negativity)} \end{array} \][/tex]
3. Find the feasible region:
- Constraint 1: [tex]\( x + y = 6 \)[/tex]
- Constraint 2: [tex]\( 5x + y = 10 \)[/tex]
- Constraint 3: [tex]\( x + 5y = 14 \)[/tex]
After transforming these inequalities into equations, these constraints define half-planes. The feasible region is the intersection of these half-planes along with the non-negativity constraints.
4. Determine the corner points:
Identify the intersections of the constraints in the feasible region. Solving these intersections systematically:
- Intersection of [tex]\( x + y = 6 \)[/tex] and [tex]\( 5x + y = 10 \)[/tex]:
[tex]\[ \begin{cases} x + y = 6 \\ 5x + y = 10 \end{cases} \][/tex]
Subtract the first equation from the second equation:
[tex]\[ 4x = 4 \implies x = 1 \\ y = 6 - x = 5 \][/tex]
Intersection point: [tex]\( (1, 5) \)[/tex]
- Intersection of [tex]\( x + y = 6 \)[/tex] and [tex]\( x + 5y = 14 \)[/tex]:
[tex]\[ \begin{cases} x + y = 6 \\ x + 5y = 14 \end{cases} \][/tex]
Subtract the first equation from the second equation:
[tex]\[ 4y = 8 \implies y = 2 \\ x = 6 - y = 4 \][/tex]
Intersection point: [tex]\( (4, 2) \)[/tex]
- Intersection of [tex]\( 5x + y = 10 \)[/tex] and [tex]\( x + 5y = 14 \)[/tex]:
[tex]\[ \begin{cases} 5x + y = 10 \\ x + 5y = 14 \end{cases} \][/tex]
Multiply the first equation by 5:
[tex]\[ 25x + 5y = 50 \\ x + 5y = 14 \][/tex]
Subtract the second equation from this:
[tex]\[ 24x = 36 \implies x = 1.5 \\ y = (10 - 5x) = 2.5 \][/tex]
Intersection point: [tex]\( (1.5, 2.5) \)[/tex]
5. Evaluate the objective function at each corner point:
[tex]\[ C = 10x + 26y \][/tex]
- At [tex]\( (1, 5) \)[/tex]:
[tex]\[ C = 10(1) + 26(5) = 10 + 130 = 140 \][/tex]
- At [tex]\( (4, 2) \)[/tex]:
[tex]\[ C = 10(4) + 26(2) = 40 + 52 = 92 \][/tex]
- At [tex]\( (1.5, 2.5) \)[/tex]:
[tex]\[ C = 10(1.5) + 26(2.5) = 15 + 65 = 80 \][/tex]
6. Conclusion:
The minimum value of [tex]\( C = 10x + 26y \)[/tex] subject to the given constraints is found at the point [tex]\( (1.5, 2.5) \)[/tex].
Therefore, the minimum value of [tex]\( C \)[/tex] is:
[tex]\[ \boxed{80} \][/tex]
Thanks for using our service. We aim to provide the most accurate answers for all your queries. Visit us again for more insights. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.