Find the best answers to your questions at Westonci.ca, where experts and enthusiasts provide accurate, reliable information. Discover in-depth answers to your questions from a wide network of experts on our user-friendly Q&A platform. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
To determine the degree of a polynomial, we need to identify the highest power of the variable [tex]\( x \)[/tex] that appears in the polynomial. Let's go through the given polynomial step by step:
[tex]\[ 6x^5 - 4x^2 + 2x^6 - 3 + x \][/tex]
1. Identify the terms:
- [tex]\( 6x^5 \)[/tex]
- [tex]\( -4x^2 \)[/tex]
- [tex]\( 2x^6 \)[/tex]
- [tex]\( -3 \)[/tex]
- [tex]\( x \)[/tex]
2. Determine the degree of each term:
- The term [tex]\( 6x^5 \)[/tex] has a degree of 5.
- The term [tex]\( -4x^2 \)[/tex] has a degree of 2.
- The term [tex]\( 2x^6 \)[/tex] has a degree of 6.
- The term [tex]\( -3 \)[/tex] is a constant and has a degree of 0.
- The term [tex]\( x \)[/tex] is equivalent to [tex]\( x^1 \)[/tex], so it has a degree of 1.
3. Find the highest degree:
- Out of the degrees [tex]\( 5, 2, 6, 0, 1 \)[/tex], the highest degree is 6.
Therefore, the degree of the polynomial [tex]\( 6x^5 - 4x^2 + 2x^6 - 3 + x \)[/tex] is [tex]\(\boxed{6}\)[/tex].
[tex]\[ 6x^5 - 4x^2 + 2x^6 - 3 + x \][/tex]
1. Identify the terms:
- [tex]\( 6x^5 \)[/tex]
- [tex]\( -4x^2 \)[/tex]
- [tex]\( 2x^6 \)[/tex]
- [tex]\( -3 \)[/tex]
- [tex]\( x \)[/tex]
2. Determine the degree of each term:
- The term [tex]\( 6x^5 \)[/tex] has a degree of 5.
- The term [tex]\( -4x^2 \)[/tex] has a degree of 2.
- The term [tex]\( 2x^6 \)[/tex] has a degree of 6.
- The term [tex]\( -3 \)[/tex] is a constant and has a degree of 0.
- The term [tex]\( x \)[/tex] is equivalent to [tex]\( x^1 \)[/tex], so it has a degree of 1.
3. Find the highest degree:
- Out of the degrees [tex]\( 5, 2, 6, 0, 1 \)[/tex], the highest degree is 6.
Therefore, the degree of the polynomial [tex]\( 6x^5 - 4x^2 + 2x^6 - 3 + x \)[/tex] is [tex]\(\boxed{6}\)[/tex].
Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. We appreciate your time. Please come back anytime for the latest information and answers to your questions. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.