Get reliable answers to your questions at Westonci.ca, where our knowledgeable community is always ready to help. Get immediate and reliable solutions to your questions from a community of experienced experts on our Q&A platform. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
Let's go through the correct steps to multiply the polynomials [tex]\( 3 - 6y^2 \)[/tex] and [tex]\( y^2 + 2 \)[/tex] step-by-step:
1. Write out the polynomials:
[tex]\( (3 - 6y^2) \)[/tex] and [tex]\( (y^2 + 2) \)[/tex].
2. Apply the distributive property (also known as the FOIL method when dealing with binomials):
[tex]\[ (3 - 6y^2)(y^2 + 2) \][/tex]
We distribute each term in the first polynomial by each term in the second polynomial:
[tex]\[ = 3 \cdot y^2 + 3 \cdot 2 - 6y^2 \cdot y^2 - 6y^2 \cdot 2. \][/tex]
3. Perform the individual multiplications:
- [tex]\( 3 \cdot y^2 \)[/tex]:
[tex]\[ 3y^2 \][/tex]
- [tex]\( 3 \cdot 2 \)[/tex]:
[tex]\[ 6 \][/tex]
- [tex]\( -6y^2 \cdot y^2 \)[/tex]:
[tex]\[ -6y^4 \][/tex]
- [tex]\( -6y^2 \cdot 2 \)[/tex]:
[tex]\[ -12y^2 \][/tex]
4. Combine all the terms:
[tex]\[ 6 - 12y^2 + 3y^2 - 6y^4 \][/tex]
5. Combine like terms (if any):
The only like terms are [tex]\( -12y^2 \)[/tex] and [tex]\( 3y^2 \)[/tex]:
[tex]\[ 6 - 9y^2 - 6y^4 \][/tex]
6. Final polynomial in standard form:
[tex]\[ -6y^4 - 9y^2 + 6 \][/tex]
So, the correctly multiplied polynomial is:
[tex]\[ -6y^4 - 9y^2 + 6 \][/tex]
Now, analyzing the student's work:
- The student's method is incorrect because they did not correctly apply the distributive property to each term in both polynomials and didn't perform all the necessary multiplications.
- They only accounted for one multiplication and missed the cross terms, resulting in an incomplete and incorrect result.
Therefore, the student's work is incorrect as indicated by the following points:
- She did not multiply [tex]\(-6y^2\)[/tex] by [tex]\(2\)[/tex] correctly.
- She did not add the terms correctly (because she failed to consider all necessary terms).
- She did not use the distributive property correctly.
Correct multiplication yields [tex]\(-6y^4 - 9y^2 + 6\)[/tex], not just [tex]\(-9y^2\)[/tex]. So, the correct choice is: No, she did not use the distributive property correctly.
1. Write out the polynomials:
[tex]\( (3 - 6y^2) \)[/tex] and [tex]\( (y^2 + 2) \)[/tex].
2. Apply the distributive property (also known as the FOIL method when dealing with binomials):
[tex]\[ (3 - 6y^2)(y^2 + 2) \][/tex]
We distribute each term in the first polynomial by each term in the second polynomial:
[tex]\[ = 3 \cdot y^2 + 3 \cdot 2 - 6y^2 \cdot y^2 - 6y^2 \cdot 2. \][/tex]
3. Perform the individual multiplications:
- [tex]\( 3 \cdot y^2 \)[/tex]:
[tex]\[ 3y^2 \][/tex]
- [tex]\( 3 \cdot 2 \)[/tex]:
[tex]\[ 6 \][/tex]
- [tex]\( -6y^2 \cdot y^2 \)[/tex]:
[tex]\[ -6y^4 \][/tex]
- [tex]\( -6y^2 \cdot 2 \)[/tex]:
[tex]\[ -12y^2 \][/tex]
4. Combine all the terms:
[tex]\[ 6 - 12y^2 + 3y^2 - 6y^4 \][/tex]
5. Combine like terms (if any):
The only like terms are [tex]\( -12y^2 \)[/tex] and [tex]\( 3y^2 \)[/tex]:
[tex]\[ 6 - 9y^2 - 6y^4 \][/tex]
6. Final polynomial in standard form:
[tex]\[ -6y^4 - 9y^2 + 6 \][/tex]
So, the correctly multiplied polynomial is:
[tex]\[ -6y^4 - 9y^2 + 6 \][/tex]
Now, analyzing the student's work:
- The student's method is incorrect because they did not correctly apply the distributive property to each term in both polynomials and didn't perform all the necessary multiplications.
- They only accounted for one multiplication and missed the cross terms, resulting in an incomplete and incorrect result.
Therefore, the student's work is incorrect as indicated by the following points:
- She did not multiply [tex]\(-6y^2\)[/tex] by [tex]\(2\)[/tex] correctly.
- She did not add the terms correctly (because she failed to consider all necessary terms).
- She did not use the distributive property correctly.
Correct multiplication yields [tex]\(-6y^4 - 9y^2 + 6\)[/tex], not just [tex]\(-9y^2\)[/tex]. So, the correct choice is: No, she did not use the distributive property correctly.
We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Westonci.ca is your go-to source for reliable answers. Return soon for more expert insights.