Looking for answers? Westonci.ca is your go-to Q&A platform, offering quick, trustworthy responses from a community of experts. Explore in-depth answers to your questions from a knowledgeable community of experts across different fields. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
Let's solve the compound inequality [tex]\(1 \leq 2x + 6 < 15\)[/tex]:
### Step 1: Break down the compound inequality into two separate inequalities.
We have:
1. [tex]\(1 \leq 2x + 6\)[/tex]
2. [tex]\(2x + 6 < 15\)[/tex]
### Step 2: Solve each inequality separately.
#### Solve [tex]\(1 \leq 2x + 6\)[/tex]:
1. Subtract 6 from both sides:
[tex]\[ 1 - 6 \leq 2x + 6 - 6 \][/tex]
[tex]\[ -5 \leq 2x \][/tex]
2. Divide both sides by 2:
[tex]\[ \frac{-5}{2} \leq x \][/tex]
[tex]\[ -2.5 \leq x \][/tex]
This simplifies to:
[tex]\[ x \geq -2.5 \][/tex]
#### Solve [tex]\(2x + 6 < 15\)[/tex]:
1. Subtract 6 from both sides:
[tex]\[ 2x + 6 - 6 < 15 - 6 \][/tex]
[tex]\[ 2x < 9 \][/tex]
2. Divide both sides by 2:
[tex]\[ \frac{2x}{2} < \frac{9}{2} \][/tex]
[tex]\[ x < 4.5 \][/tex]
### Step 3: Combine the solutions.
From the two inequalities [tex]\(x \geq -2.5\)[/tex] and [tex]\(x < 4.5\)[/tex], we can combine them to form the compound inequality:
[tex]\[ -2.5 \leq x < 4.5 \][/tex]
### Final solution:
The solution set for the inequality [tex]\(1 \leq 2x + 6 < 15\)[/tex] is:
[tex]\[ \boxed{-2.5 \leq x < 4.5} \][/tex]
### Step 1: Break down the compound inequality into two separate inequalities.
We have:
1. [tex]\(1 \leq 2x + 6\)[/tex]
2. [tex]\(2x + 6 < 15\)[/tex]
### Step 2: Solve each inequality separately.
#### Solve [tex]\(1 \leq 2x + 6\)[/tex]:
1. Subtract 6 from both sides:
[tex]\[ 1 - 6 \leq 2x + 6 - 6 \][/tex]
[tex]\[ -5 \leq 2x \][/tex]
2. Divide both sides by 2:
[tex]\[ \frac{-5}{2} \leq x \][/tex]
[tex]\[ -2.5 \leq x \][/tex]
This simplifies to:
[tex]\[ x \geq -2.5 \][/tex]
#### Solve [tex]\(2x + 6 < 15\)[/tex]:
1. Subtract 6 from both sides:
[tex]\[ 2x + 6 - 6 < 15 - 6 \][/tex]
[tex]\[ 2x < 9 \][/tex]
2. Divide both sides by 2:
[tex]\[ \frac{2x}{2} < \frac{9}{2} \][/tex]
[tex]\[ x < 4.5 \][/tex]
### Step 3: Combine the solutions.
From the two inequalities [tex]\(x \geq -2.5\)[/tex] and [tex]\(x < 4.5\)[/tex], we can combine them to form the compound inequality:
[tex]\[ -2.5 \leq x < 4.5 \][/tex]
### Final solution:
The solution set for the inequality [tex]\(1 \leq 2x + 6 < 15\)[/tex] is:
[tex]\[ \boxed{-2.5 \leq x < 4.5} \][/tex]
We appreciate your time. Please come back anytime for the latest information and answers to your questions. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.