At Westonci.ca, we connect you with the answers you need, thanks to our active and informed community. Join our platform to connect with experts ready to provide precise answers to your questions in various areas. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
Sure! Let's graph the equation [tex]\( y = -x^2 + 12x - 35 \)[/tex].
1. Vertex of the Parabola:
Parabolas have a highest or lowest point called the vertex. For a quadratic function in the form [tex]\( y = ax^2 + bx + c \)[/tex], the x-coordinate of the vertex is given by [tex]\( x = -\frac{b}{2a} \)[/tex].
For our equation [tex]\( y = -x^2 + 12x - 35 \)[/tex]:
- [tex]\( a = -1 \)[/tex]
- [tex]\( b = 12 \)[/tex]
- So, the x-coordinate [tex]\( x = -\frac{12}{2(-1)} = 6 \)[/tex].
To find the y-coordinate of the vertex, plug [tex]\( x = 6 \)[/tex] back into the equation:
[tex]\[ y = -(6)^2 + 12(6) - 35 = -36 + 72 - 35 = 1 \][/tex]
Thus, the vertex is at [tex]\( (6, 1) \)[/tex].
2. Roots (x-intercepts):
To find the x-intercepts, solve for [tex]\( x \)[/tex] when [tex]\( y = 0 \)[/tex]:
[tex]\[ -x^2 + 12x - 35 = 0 \][/tex]
The solutions to this quadratic equation are:
[tex]\[ x = 5 \quad \text{and} \quad x = 7 \][/tex]
So, the roots are [tex]\( (5, 0) \)[/tex] and [tex]\( (7, 0) \)[/tex].
3. Two Additional Points:
We can choose any other two x-values to find additional points. Here, we'll take [tex]\( x = 4 \)[/tex] and [tex]\( x = 8 \)[/tex].
For [tex]\( x = 4 \)[/tex]:
[tex]\[ y = -(4)^2 + 12(4) - 35 = -16 + 48 - 35 = -3 \][/tex]
So, the point is [tex]\( (4, -3) \)[/tex].
For [tex]\( x = 8 \)[/tex]:
[tex]\[ y = -(8)^2 + 12(8) - 35 = -64 + 96 - 35 = -3 \][/tex]
So, the point is [tex]\( (8, -3) \)[/tex].
4. Summary of Points:
- Vertex: [tex]\( (6, 1) \)[/tex]
- Roots: [tex]\( (5, 0) \)[/tex] and [tex]\( (7, 0) \)[/tex]
- Additional Points: [tex]\( (4, -3) \)[/tex] and [tex]\( (8, -3) \)[/tex]
You can plot these points on a coordinate axis:
- [tex]\( (4, -3) \)[/tex]
- [tex]\( (5, 0) \)[/tex]
- [tex]\( (6, 1) \)[/tex]
- [tex]\( (7, 0) \)[/tex]
- [tex]\( (8, -3) \)[/tex]
Once you plot these points, draw a smooth curve passing through them to complete the graph of the equation [tex]\( y = -x^2 + 12x - 35 \)[/tex]. This curve will be a downward-opening parabola.
1. Vertex of the Parabola:
Parabolas have a highest or lowest point called the vertex. For a quadratic function in the form [tex]\( y = ax^2 + bx + c \)[/tex], the x-coordinate of the vertex is given by [tex]\( x = -\frac{b}{2a} \)[/tex].
For our equation [tex]\( y = -x^2 + 12x - 35 \)[/tex]:
- [tex]\( a = -1 \)[/tex]
- [tex]\( b = 12 \)[/tex]
- So, the x-coordinate [tex]\( x = -\frac{12}{2(-1)} = 6 \)[/tex].
To find the y-coordinate of the vertex, plug [tex]\( x = 6 \)[/tex] back into the equation:
[tex]\[ y = -(6)^2 + 12(6) - 35 = -36 + 72 - 35 = 1 \][/tex]
Thus, the vertex is at [tex]\( (6, 1) \)[/tex].
2. Roots (x-intercepts):
To find the x-intercepts, solve for [tex]\( x \)[/tex] when [tex]\( y = 0 \)[/tex]:
[tex]\[ -x^2 + 12x - 35 = 0 \][/tex]
The solutions to this quadratic equation are:
[tex]\[ x = 5 \quad \text{and} \quad x = 7 \][/tex]
So, the roots are [tex]\( (5, 0) \)[/tex] and [tex]\( (7, 0) \)[/tex].
3. Two Additional Points:
We can choose any other two x-values to find additional points. Here, we'll take [tex]\( x = 4 \)[/tex] and [tex]\( x = 8 \)[/tex].
For [tex]\( x = 4 \)[/tex]:
[tex]\[ y = -(4)^2 + 12(4) - 35 = -16 + 48 - 35 = -3 \][/tex]
So, the point is [tex]\( (4, -3) \)[/tex].
For [tex]\( x = 8 \)[/tex]:
[tex]\[ y = -(8)^2 + 12(8) - 35 = -64 + 96 - 35 = -3 \][/tex]
So, the point is [tex]\( (8, -3) \)[/tex].
4. Summary of Points:
- Vertex: [tex]\( (6, 1) \)[/tex]
- Roots: [tex]\( (5, 0) \)[/tex] and [tex]\( (7, 0) \)[/tex]
- Additional Points: [tex]\( (4, -3) \)[/tex] and [tex]\( (8, -3) \)[/tex]
You can plot these points on a coordinate axis:
- [tex]\( (4, -3) \)[/tex]
- [tex]\( (5, 0) \)[/tex]
- [tex]\( (6, 1) \)[/tex]
- [tex]\( (7, 0) \)[/tex]
- [tex]\( (8, -3) \)[/tex]
Once you plot these points, draw a smooth curve passing through them to complete the graph of the equation [tex]\( y = -x^2 + 12x - 35 \)[/tex]. This curve will be a downward-opening parabola.
Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. We hope this was helpful. Please come back whenever you need more information or answers to your queries. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.