Discover the answers you need at Westonci.ca, where experts provide clear and concise information on various topics. Get quick and reliable solutions to your questions from a community of experienced experts on our platform. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
To find the difference between the two possible lengths of the third side of a right triangle when given two side lengths, we need to consider two scenarios: when one given side is the hypotenuse and when the hypotenuse is the third side.
### Step-by-Step Solution:
1. Identify the given sides: We have two sides of the triangle, 5 inches and 8 inches.
2. Calculate the hypotenuse when the given sides are the legs:
To find the hypotenuse [tex]\( c \)[/tex] when 5 inches and 8 inches are the legs [tex]\( a \)[/tex] and [tex]\( b \)[/tex], we use the Pythagorean theorem:
[tex]\[ c = \sqrt{a^2 + b^2} \][/tex]
[tex]\[ c = \sqrt{5^2 + 8^2} \][/tex]
[tex]\[ c = \sqrt{25 + 64} \][/tex]
[tex]\[ c = \sqrt{89} \][/tex]
The calculated length of the hypotenuse is approximately 9.4 inches.
3. Calculate the length of the other side when one of the given sides is the hypotenuse:
In this case, we assume one of the given sides (say 8 inches) is the hypotenuse and we find the length of the other leg [tex]\( a \)[/tex] when the known leg [tex]\( b \)[/tex] is 5 inches.
Using the Pythagorean theorem in reverse:
[tex]\[ a = \sqrt{c^2 - b^2} \][/tex]
[tex]\[ a = \sqrt{8^2 - 5^2} \][/tex]
[tex]\[ a = \sqrt{64 - 25} \][/tex]
[tex]\[ a = \sqrt{39} \][/tex]
The calculated length of the other leg is approximately 6.2 inches.
4. Calculate the difference between the two possible lengths:
There are two possible lengths for the third side: approximately 9.4 inches (when 5 and 8 are legs) and approximately 6.2 inches (when 8 is the hypotenuse).
The difference between these two lengths is:
[tex]\[ \text{Difference} = |9.4 - 6.2| \][/tex]
[tex]\[ \text{Difference} = 3.2 \][/tex]
5. Round the difference to the nearest tenth:
The difference is already rounded to the nearest tenth.
Thus, the difference between the two possible lengths of the third side of the triangle is 3.2 inches.
### Step-by-Step Solution:
1. Identify the given sides: We have two sides of the triangle, 5 inches and 8 inches.
2. Calculate the hypotenuse when the given sides are the legs:
To find the hypotenuse [tex]\( c \)[/tex] when 5 inches and 8 inches are the legs [tex]\( a \)[/tex] and [tex]\( b \)[/tex], we use the Pythagorean theorem:
[tex]\[ c = \sqrt{a^2 + b^2} \][/tex]
[tex]\[ c = \sqrt{5^2 + 8^2} \][/tex]
[tex]\[ c = \sqrt{25 + 64} \][/tex]
[tex]\[ c = \sqrt{89} \][/tex]
The calculated length of the hypotenuse is approximately 9.4 inches.
3. Calculate the length of the other side when one of the given sides is the hypotenuse:
In this case, we assume one of the given sides (say 8 inches) is the hypotenuse and we find the length of the other leg [tex]\( a \)[/tex] when the known leg [tex]\( b \)[/tex] is 5 inches.
Using the Pythagorean theorem in reverse:
[tex]\[ a = \sqrt{c^2 - b^2} \][/tex]
[tex]\[ a = \sqrt{8^2 - 5^2} \][/tex]
[tex]\[ a = \sqrt{64 - 25} \][/tex]
[tex]\[ a = \sqrt{39} \][/tex]
The calculated length of the other leg is approximately 6.2 inches.
4. Calculate the difference between the two possible lengths:
There are two possible lengths for the third side: approximately 9.4 inches (when 5 and 8 are legs) and approximately 6.2 inches (when 8 is the hypotenuse).
The difference between these two lengths is:
[tex]\[ \text{Difference} = |9.4 - 6.2| \][/tex]
[tex]\[ \text{Difference} = 3.2 \][/tex]
5. Round the difference to the nearest tenth:
The difference is already rounded to the nearest tenth.
Thus, the difference between the two possible lengths of the third side of the triangle is 3.2 inches.
Thank you for your visit. We are dedicated to helping you find the information you need, whenever you need it. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.