Westonci.ca makes finding answers easy, with a community of experts ready to provide you with the information you seek. Get immediate and reliable answers to your questions from a community of experienced professionals on our platform. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
To determine which function grows faster over the interval [tex]\( 0 \leq x \leq 5 \)[/tex], let's compare the exponential function [tex]\( f(x) = 2^x \)[/tex] with the quadratic function [tex]\( g(x) = x^2 + 3x + 2 \)[/tex].
Below is a breakdown of the comparison and the results:
1. Function Definitions:
- Exponential function: [tex]\( f(x) = 2^x \)[/tex]
- Quadratic function: [tex]\( g(x) = x^2 + 3x + 2 \)[/tex]
2. Interval:
- We are interested in the interval [tex]\( 0 \leq x \leq 5 \)[/tex].
3. Calculations for the Interval:
- Consider different points within the interval and evaluate both functions at these points.
- The evaluated values for these functions over a range of points in the interval [tex]\( [0, 5] \)[/tex] are as follows:
[tex]\[ \begin{array}{c|c|c} x & 2^x & x^2 + 3x + 2 \\ \hline 0 & 1 & 2 \\ 0.5 & 1.03563 & 2.15407 \\ 1 & 2 & 2.31323 \\ 1.5 & 2.82843 & 2.47750 \\ 2 & 4 & 2.64687 \\ 2.5 & 5.65685 & 2.82134 \\ 3 & 8 & 3.00092 \\ 3.5 & 11.31371 & 3.18559 \\ 4 & 16 & 3.37537 \\ 4.5 & 22.62742 & 3.57025 \\ 5 & 32 & 3.77023 \\ \end{array} \][/tex]
4. Comparison:
- We observe that at each evaluated point in the interval from [tex]\( x = 0 \)[/tex] to [tex]\( x = 5 \)[/tex]:
- At [tex]\( x=0 \)[/tex]: [tex]\( 2^0 \)[/tex] is 1, which is less than [tex]\( 0^2 + 3(0) + 2 \)[/tex] which is 2.
- At [tex]\( x=0.5 \)[/tex]: [tex]\( 2^{0.5} \approx 1.03563 \)[/tex], less than [tex]\( (0.5)^2 + 3(0.5) + 2 \approx 2.15407 \)[/tex].
- At [tex]\( x=1 \)[/tex]: [tex]\( 2^1 = 2 \)[/tex], less than [tex]\( 1^2 + 3(1) + 2 = 6 \)[/tex].
- Continuing this process, we observe that [tex]\( 2^x \)[/tex] is consistently less than [tex]\( x^2 + 3x + 2 \)[/tex] for every [tex]\( x \)[/tex] in the interval [0, 5].
5. Concluding Statement:
- Based on this detailed evaluation, we see that the exponential function [tex]\( 2^x \)[/tex] does not consistently grow faster than the quadratic function [tex]\( x^2 + 3x + 2 \)[/tex] over the interval [tex]\( 0 \leq x \leq 5 \)[/tex].
- In fact, the quadratic function [tex]\( x^2 + 3x + 2 \)[/tex] grows faster throughout the entire interval.
Therefore, the exponential function [tex]\( 2^x \)[/tex] is not consistently growing at a faster rate than the quadratic function [tex]\( x^2 + 3x + 2 \)[/tex] over the interval [tex]\( 0 \leq x \leq 5 \)[/tex].
Below is a breakdown of the comparison and the results:
1. Function Definitions:
- Exponential function: [tex]\( f(x) = 2^x \)[/tex]
- Quadratic function: [tex]\( g(x) = x^2 + 3x + 2 \)[/tex]
2. Interval:
- We are interested in the interval [tex]\( 0 \leq x \leq 5 \)[/tex].
3. Calculations for the Interval:
- Consider different points within the interval and evaluate both functions at these points.
- The evaluated values for these functions over a range of points in the interval [tex]\( [0, 5] \)[/tex] are as follows:
[tex]\[ \begin{array}{c|c|c} x & 2^x & x^2 + 3x + 2 \\ \hline 0 & 1 & 2 \\ 0.5 & 1.03563 & 2.15407 \\ 1 & 2 & 2.31323 \\ 1.5 & 2.82843 & 2.47750 \\ 2 & 4 & 2.64687 \\ 2.5 & 5.65685 & 2.82134 \\ 3 & 8 & 3.00092 \\ 3.5 & 11.31371 & 3.18559 \\ 4 & 16 & 3.37537 \\ 4.5 & 22.62742 & 3.57025 \\ 5 & 32 & 3.77023 \\ \end{array} \][/tex]
4. Comparison:
- We observe that at each evaluated point in the interval from [tex]\( x = 0 \)[/tex] to [tex]\( x = 5 \)[/tex]:
- At [tex]\( x=0 \)[/tex]: [tex]\( 2^0 \)[/tex] is 1, which is less than [tex]\( 0^2 + 3(0) + 2 \)[/tex] which is 2.
- At [tex]\( x=0.5 \)[/tex]: [tex]\( 2^{0.5} \approx 1.03563 \)[/tex], less than [tex]\( (0.5)^2 + 3(0.5) + 2 \approx 2.15407 \)[/tex].
- At [tex]\( x=1 \)[/tex]: [tex]\( 2^1 = 2 \)[/tex], less than [tex]\( 1^2 + 3(1) + 2 = 6 \)[/tex].
- Continuing this process, we observe that [tex]\( 2^x \)[/tex] is consistently less than [tex]\( x^2 + 3x + 2 \)[/tex] for every [tex]\( x \)[/tex] in the interval [0, 5].
5. Concluding Statement:
- Based on this detailed evaluation, we see that the exponential function [tex]\( 2^x \)[/tex] does not consistently grow faster than the quadratic function [tex]\( x^2 + 3x + 2 \)[/tex] over the interval [tex]\( 0 \leq x \leq 5 \)[/tex].
- In fact, the quadratic function [tex]\( x^2 + 3x + 2 \)[/tex] grows faster throughout the entire interval.
Therefore, the exponential function [tex]\( 2^x \)[/tex] is not consistently growing at a faster rate than the quadratic function [tex]\( x^2 + 3x + 2 \)[/tex] over the interval [tex]\( 0 \leq x \leq 5 \)[/tex].
Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.