Westonci.ca makes finding answers easy, with a community of experts ready to provide you with the information you seek. Connect with a community of experts ready to help you find accurate solutions to your questions quickly and efficiently. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
To find the slope of the line that contains the points [tex]\((-1, 8)\)[/tex] and [tex]\( (5, -4) \)[/tex], we use the slope formula:
[tex]\[ \text{slope} = \frac{y_2 - y_1}{x_2 - x_1} \][/tex]
Substituting the coordinates of the given points into the formula where [tex]\((x_1, y_1) = (-1, 8)\)[/tex] and [tex]\((x_2, y_2) = (5, -4)\)[/tex]:
[tex]\[ \text{slope} = \frac{-4 - 8}{5 - (-1)} \][/tex]
Simplify the expressions in the numerator and the denominator:
[tex]\[ = \frac{-4 - 8}{5 + 1} \][/tex]
[tex]\[ = \frac{-12}{6} \][/tex]
Now, divide [tex]\(-12\)[/tex] by [tex]\(6\)[/tex]:
[tex]\[ = -2 \][/tex]
Therefore, the slope of the line that contains the points [tex]\((-1, 8)\)[/tex] and [tex]\( (5, -4) \)[/tex] is [tex]\(-2\)[/tex].
The correct answer is [tex]\(\boxed{-2}\)[/tex].
[tex]\[ \text{slope} = \frac{y_2 - y_1}{x_2 - x_1} \][/tex]
Substituting the coordinates of the given points into the formula where [tex]\((x_1, y_1) = (-1, 8)\)[/tex] and [tex]\((x_2, y_2) = (5, -4)\)[/tex]:
[tex]\[ \text{slope} = \frac{-4 - 8}{5 - (-1)} \][/tex]
Simplify the expressions in the numerator and the denominator:
[tex]\[ = \frac{-4 - 8}{5 + 1} \][/tex]
[tex]\[ = \frac{-12}{6} \][/tex]
Now, divide [tex]\(-12\)[/tex] by [tex]\(6\)[/tex]:
[tex]\[ = -2 \][/tex]
Therefore, the slope of the line that contains the points [tex]\((-1, 8)\)[/tex] and [tex]\( (5, -4) \)[/tex] is [tex]\(-2\)[/tex].
The correct answer is [tex]\(\boxed{-2}\)[/tex].
We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.