Find the best answers to your questions at Westonci.ca, where experts and enthusiasts provide accurate, reliable information. Get immediate and reliable answers to your questions from a community of experienced experts on our platform. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
To find the length of the minor arc [tex]\(SV\)[/tex] in the circle [tex]\(T\)[/tex] with a given radius and central angle, we will use the arc length formula for a circle. The formula is [tex]\( S = r \theta \)[/tex], where [tex]\( S \)[/tex] is the arc length, [tex]\( r \)[/tex] is the radius, and [tex]\( \theta \)[/tex] is the central angle in radians.
Let's break down the solution step by step:
1. Identify the radius:
The radius of circle [tex]\( T \)[/tex] is given as [tex]\( 24 \)[/tex] inches.
2. Identify the central angle:
The central angle [tex]\( \theta \)[/tex] is given in radians as:
[tex]\[ \theta = \frac{5 \pi}{6} \][/tex]
3. Apply the arc length formula:
We substitute the given values into the formula [tex]\( S = r \theta \)[/tex]:
[tex]\[ S = 24 \times \frac{5 \pi}{6} \][/tex]
4. Simplify the expression:
Simplify the multiplication:
[tex]\[ S = 24 \times \frac{5 \pi}{6} = 4 \times 5 \pi = 20 \pi \, \text{inches} \][/tex]
So, the length of the minor arc [tex]\( SV \)[/tex] is:
[tex]\[ 20 \pi \, \text{inches} \][/tex]
Therefore, the correct answer is:
[tex]\[ 20 \pi \, \text{inches} \][/tex]
Let's break down the solution step by step:
1. Identify the radius:
The radius of circle [tex]\( T \)[/tex] is given as [tex]\( 24 \)[/tex] inches.
2. Identify the central angle:
The central angle [tex]\( \theta \)[/tex] is given in radians as:
[tex]\[ \theta = \frac{5 \pi}{6} \][/tex]
3. Apply the arc length formula:
We substitute the given values into the formula [tex]\( S = r \theta \)[/tex]:
[tex]\[ S = 24 \times \frac{5 \pi}{6} \][/tex]
4. Simplify the expression:
Simplify the multiplication:
[tex]\[ S = 24 \times \frac{5 \pi}{6} = 4 \times 5 \pi = 20 \pi \, \text{inches} \][/tex]
So, the length of the minor arc [tex]\( SV \)[/tex] is:
[tex]\[ 20 \pi \, \text{inches} \][/tex]
Therefore, the correct answer is:
[tex]\[ 20 \pi \, \text{inches} \][/tex]
Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.