Welcome to Westonci.ca, your go-to destination for finding answers to all your questions. Join our expert community today! Explore thousands of questions and answers from a knowledgeable community of experts on our user-friendly platform. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
To solve this problem, we need to analyze the effects of both a reflection across the [tex]$y$[/tex]-axis and a dilation centered at the origin by a factor of [tex]$\frac{1}{2}$[/tex] on triangle [tex]$ABC$[/tex].
1. Reflection Across the [tex]$y$[/tex]-Axis:
- A reflection across the [tex]$y$[/tex]-axis transforms a point [tex]$(x, y)$[/tex] to [tex]$(-x, y)$[/tex].
- This transformation is a rigid motion, meaning it preserves the distances (side lengths) and angles of the figure.
- Therefore, when triangle [tex]$ABC$[/tex] is reflected across the [tex]$y$[/tex]-axis, the resulting triangle will have the same side lengths and angles as the original triangle [tex]$ABC$[/tex].
2. Dilation by a Factor of [tex]$\frac{1}{2}$[/tex] Centered at the Origin:
- A dilation centered at the origin by a factor of [tex]$\frac{1}{2}$[/tex] transforms a point [tex]$(x, y)$[/tex] to [tex]$(\frac{x}{2}, \frac{y}{2})$[/tex].
- Dilations centered at a point scale the distances from that point by the given factor. In this case, every point will move closer to the origin by half the original distance.
- Dilations preserve the angles of the figure but not the side lengths. The side lengths will be half of what they were in the original figure.
Putting it all together:
- The reflection will result in a triangle congruent to [tex]$ABC$[/tex] (same side lengths and angles).
- The subsequent dilation will preserve the angles of the reflected triangle but will reduce all side lengths to half.
So, the correct statement is:
A. The reflection preserves the side lengths and angles of triangle [tex]$ABC$[/tex]. The dilation preserves angles but not side lengths.
1. Reflection Across the [tex]$y$[/tex]-Axis:
- A reflection across the [tex]$y$[/tex]-axis transforms a point [tex]$(x, y)$[/tex] to [tex]$(-x, y)$[/tex].
- This transformation is a rigid motion, meaning it preserves the distances (side lengths) and angles of the figure.
- Therefore, when triangle [tex]$ABC$[/tex] is reflected across the [tex]$y$[/tex]-axis, the resulting triangle will have the same side lengths and angles as the original triangle [tex]$ABC$[/tex].
2. Dilation by a Factor of [tex]$\frac{1}{2}$[/tex] Centered at the Origin:
- A dilation centered at the origin by a factor of [tex]$\frac{1}{2}$[/tex] transforms a point [tex]$(x, y)$[/tex] to [tex]$(\frac{x}{2}, \frac{y}{2})$[/tex].
- Dilations centered at a point scale the distances from that point by the given factor. In this case, every point will move closer to the origin by half the original distance.
- Dilations preserve the angles of the figure but not the side lengths. The side lengths will be half of what they were in the original figure.
Putting it all together:
- The reflection will result in a triangle congruent to [tex]$ABC$[/tex] (same side lengths and angles).
- The subsequent dilation will preserve the angles of the reflected triangle but will reduce all side lengths to half.
So, the correct statement is:
A. The reflection preserves the side lengths and angles of triangle [tex]$ABC$[/tex]. The dilation preserves angles but not side lengths.
Thank you for your visit. We are dedicated to helping you find the information you need, whenever you need it. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.