Welcome to Westonci.ca, your go-to destination for finding answers to all your questions. Join our expert community today! Discover the answers you need from a community of experts ready to help you with their knowledge and experience in various fields. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
Sure, let's solve each part of this problem step-by-step:
### (a) Likelihood Functions
We are given that the number of call attempts [tex]\( N \)[/tex] follows a Poisson distribution under two hypotheses [tex]\( H_0 \)[/tex] and [tex]\( H_1 \)[/tex]:
- Under [tex]\( H_0 \)[/tex]: The mean number of call attempts [tex]\( \lambda_0 \)[/tex] is 6.
- Under [tex]\( H_1 \)[/tex]: The mean number of call attempts [tex]\( \lambda_1 \)[/tex] is 8.
The Poisson probability mass function (PMF) is given by:
[tex]\[ P(N = n \mid \lambda) = \frac{e^{-\lambda} \lambda^n}{n!} \][/tex]
Thus, for each hypothesis:
[tex]\[ P(N = n \mid H_0) = \frac{e^{-6} \cdot 6^n}{n!} \][/tex]
[tex]\[ P(N = n \mid H_1) = \frac{e^{-8} \cdot 8^n}{n!} \][/tex]
### (b) MAP Hypothesis Test
The Maximum a Posteriori (MAP) hypothesis test aims to choose the hypothesis that maximizes the posterior probability. This is given by comparing the likelihoods weighted by their prior probabilities.
[tex]\[ \text{Select } H_0 \text{ if } P(N = n \mid H_0) \cdot P(H_0) > P(N = n \mid H_1) \cdot P(H_1) \][/tex]
[tex]\[ \text{Select } H_1 \text{ otherwise } \][/tex]
Given:
[tex]\[ P(H_0) = 0.3 \][/tex]
[tex]\[ P(H_1) = 0.7 \][/tex]
Thus, the decision rule is:
[tex]\[ \frac{e^{-6} \cdot 6^n}{n!} \cdot 0.3 \quad \text{vs} \quad \frac{e^{-8} \cdot 8^n}{n!} \cdot 0.7 \][/tex]
[tex]\[ \text{Select } H_0 \text{ if } 0.3 \cdot 6^n \cdot e^{-6} > 0.7 \cdot 8^n \cdot e^{-8} \][/tex]
[tex]\[ \text{Select } H_1 \text{ otherwise } \][/tex]
### (c) Total Error Probability [tex]\(P_{\text{ERR}}\)[/tex]
To compute the total error probability [tex]\(P_{\text{ERR}}\)[/tex], we need to account for the probabilities of false alarms and misses. Here, the total error probability is the sum of these probabilities weighted by their prior:
- A false alarm occurs when [tex]\( H_0 \)[/tex] is chosen but [tex]\( N \)[/tex] was actually generated by [tex]\( H_1 \)[/tex].
- A miss occurs when [tex]\( H_1 \)[/tex] is chosen but [tex]\( N \)[/tex] was actually generated by [tex]\( H_0 \)[/tex].
The total error probability [tex]\(P_{\text{ERR}}\)[/tex] is calculated as follows:
[tex]\[ P_{\text{ERR}} = \sum_{n=0}^{\infty} \left[ P(N = n \mid H_1) \cdot P(H_1) \cdot I(\text{Decision} = H_0) + P(N = n \mid H_0) \cdot P(H_0) \cdot I(\text{Decision} = H_1) \right] \][/tex]
Where [tex]\( I(\cdot) \)[/tex] is an indicator function that is 1 if the condition is true, otherwise 0. Based on the calculated result:
[tex]\[ P_{\text{ERR}} \approx 0.2842257302459429 \][/tex]
### (d) Average Cost of MAP Policy and Minimum Cost Policy
The average cost of the MAP policy is given by:
[tex]\[ \text{Average Cost}_{\text{MAP}} = P_{\text{ERR}} \cdot C_{01} + (1 - P_{\text{ERR}}) \cdot C_{10} \][/tex]
Given the costs:
[tex]\[ C_{10} = 10 \][/tex]
[tex]\[ C_{01} = 10^4 \][/tex]
Using the total error probability [tex]\( P_{\text{ERR}} = 0.2842257302459429 \)[/tex]:
[tex]\[ \text{Average Cost}_{\text{MAP}} = 0.2842257302459429 \cdot 10000 + (1 - 0.2842257302459429) \cdot 10 \][/tex]
[tex]\[ \approx 2849.4150451569694 \][/tex]
The minimum cost policy considers choosing the action with the minimum expected cost. In this case, the minimum possible cost comes just from making a decision that avoids the higher cost miss penalty and defaults to the false alarm cost:
[tex]\[ \text{Average Cost}_{\text{Minimum}} = \min(\text{Average Cost}_{\text{MAP}}, C_{01}, C_{10}) \][/tex]
[tex]\[ \text{Average Cost}_{\text{Minimum}} = 10 \][/tex]
Therefore, the total results are:
[tex]\[ P_{\text{ERR}} \approx 0.2842257302459429 \][/tex]
[tex]\[ \text{Average Cost}_{\text{MAP}} \approx 2849.4150451569694 \][/tex]
[tex]\[ \text{Average Cost}_{\text{Minimum}} = 10 \][/tex]
### (a) Likelihood Functions
We are given that the number of call attempts [tex]\( N \)[/tex] follows a Poisson distribution under two hypotheses [tex]\( H_0 \)[/tex] and [tex]\( H_1 \)[/tex]:
- Under [tex]\( H_0 \)[/tex]: The mean number of call attempts [tex]\( \lambda_0 \)[/tex] is 6.
- Under [tex]\( H_1 \)[/tex]: The mean number of call attempts [tex]\( \lambda_1 \)[/tex] is 8.
The Poisson probability mass function (PMF) is given by:
[tex]\[ P(N = n \mid \lambda) = \frac{e^{-\lambda} \lambda^n}{n!} \][/tex]
Thus, for each hypothesis:
[tex]\[ P(N = n \mid H_0) = \frac{e^{-6} \cdot 6^n}{n!} \][/tex]
[tex]\[ P(N = n \mid H_1) = \frac{e^{-8} \cdot 8^n}{n!} \][/tex]
### (b) MAP Hypothesis Test
The Maximum a Posteriori (MAP) hypothesis test aims to choose the hypothesis that maximizes the posterior probability. This is given by comparing the likelihoods weighted by their prior probabilities.
[tex]\[ \text{Select } H_0 \text{ if } P(N = n \mid H_0) \cdot P(H_0) > P(N = n \mid H_1) \cdot P(H_1) \][/tex]
[tex]\[ \text{Select } H_1 \text{ otherwise } \][/tex]
Given:
[tex]\[ P(H_0) = 0.3 \][/tex]
[tex]\[ P(H_1) = 0.7 \][/tex]
Thus, the decision rule is:
[tex]\[ \frac{e^{-6} \cdot 6^n}{n!} \cdot 0.3 \quad \text{vs} \quad \frac{e^{-8} \cdot 8^n}{n!} \cdot 0.7 \][/tex]
[tex]\[ \text{Select } H_0 \text{ if } 0.3 \cdot 6^n \cdot e^{-6} > 0.7 \cdot 8^n \cdot e^{-8} \][/tex]
[tex]\[ \text{Select } H_1 \text{ otherwise } \][/tex]
### (c) Total Error Probability [tex]\(P_{\text{ERR}}\)[/tex]
To compute the total error probability [tex]\(P_{\text{ERR}}\)[/tex], we need to account for the probabilities of false alarms and misses. Here, the total error probability is the sum of these probabilities weighted by their prior:
- A false alarm occurs when [tex]\( H_0 \)[/tex] is chosen but [tex]\( N \)[/tex] was actually generated by [tex]\( H_1 \)[/tex].
- A miss occurs when [tex]\( H_1 \)[/tex] is chosen but [tex]\( N \)[/tex] was actually generated by [tex]\( H_0 \)[/tex].
The total error probability [tex]\(P_{\text{ERR}}\)[/tex] is calculated as follows:
[tex]\[ P_{\text{ERR}} = \sum_{n=0}^{\infty} \left[ P(N = n \mid H_1) \cdot P(H_1) \cdot I(\text{Decision} = H_0) + P(N = n \mid H_0) \cdot P(H_0) \cdot I(\text{Decision} = H_1) \right] \][/tex]
Where [tex]\( I(\cdot) \)[/tex] is an indicator function that is 1 if the condition is true, otherwise 0. Based on the calculated result:
[tex]\[ P_{\text{ERR}} \approx 0.2842257302459429 \][/tex]
### (d) Average Cost of MAP Policy and Minimum Cost Policy
The average cost of the MAP policy is given by:
[tex]\[ \text{Average Cost}_{\text{MAP}} = P_{\text{ERR}} \cdot C_{01} + (1 - P_{\text{ERR}}) \cdot C_{10} \][/tex]
Given the costs:
[tex]\[ C_{10} = 10 \][/tex]
[tex]\[ C_{01} = 10^4 \][/tex]
Using the total error probability [tex]\( P_{\text{ERR}} = 0.2842257302459429 \)[/tex]:
[tex]\[ \text{Average Cost}_{\text{MAP}} = 0.2842257302459429 \cdot 10000 + (1 - 0.2842257302459429) \cdot 10 \][/tex]
[tex]\[ \approx 2849.4150451569694 \][/tex]
The minimum cost policy considers choosing the action with the minimum expected cost. In this case, the minimum possible cost comes just from making a decision that avoids the higher cost miss penalty and defaults to the false alarm cost:
[tex]\[ \text{Average Cost}_{\text{Minimum}} = \min(\text{Average Cost}_{\text{MAP}}, C_{01}, C_{10}) \][/tex]
[tex]\[ \text{Average Cost}_{\text{Minimum}} = 10 \][/tex]
Therefore, the total results are:
[tex]\[ P_{\text{ERR}} \approx 0.2842257302459429 \][/tex]
[tex]\[ \text{Average Cost}_{\text{MAP}} \approx 2849.4150451569694 \][/tex]
[tex]\[ \text{Average Cost}_{\text{Minimum}} = 10 \][/tex]
Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.