At Westonci.ca, we provide reliable answers to your questions from a community of experts. Start exploring today! Find reliable answers to your questions from a wide community of knowledgeable experts on our user-friendly Q&A platform. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
To simplify the expression [tex]\(\frac{5 - \frac{x+2}{x-2}}{x+3}\)[/tex], let's follow the steps methodically:
1. Combine the fractions in the numerator:
[tex]\[ \frac{5 - \frac{x+2}{x-2}}{x+3} \][/tex]
To combine these, we first need a common denominator for the terms in the numerator.
2. Express [tex]\(5\)[/tex] as a fraction with a common denominator of [tex]\(x-2\)[/tex]:
[tex]\[ 5 = \frac{5(x-2)}{x-2} \][/tex]
Now the expression becomes:
[tex]\[ \frac{\frac{5(x-2) - (x+2)}{x-2}}{x+3} \][/tex]
3. Simplify the expression inside the numerator:
[tex]\[ 5(x-2) - (x+2) = 5x - 10 - x - 2 = 4x - 12 \][/tex]
Therefore,
[tex]\[ \frac{\frac{4x - 12}{x-2}}{x+3} \][/tex]
4. Simplify the complex fraction by dividing by [tex]\(x+3\)[/tex]:
[tex]\[ \frac{4x-12}{(x-2)(x+3)} \][/tex]
5. Factor the numerator if possible:
[tex]\[ 4x - 12 = 4(x - 3) \][/tex]
So, the expression now becomes:
[tex]\[ \frac{4(x-3)}{(x-2)(x+3)} \][/tex]
Therefore, the simplified form of the expression [tex]\(\frac{5 - \frac{x+2}{x-2}}{x+3}\)[/tex] is:
[tex]\[ \frac{4(x-3)}{(x-2)(x+3)} \][/tex]
1. Combine the fractions in the numerator:
[tex]\[ \frac{5 - \frac{x+2}{x-2}}{x+3} \][/tex]
To combine these, we first need a common denominator for the terms in the numerator.
2. Express [tex]\(5\)[/tex] as a fraction with a common denominator of [tex]\(x-2\)[/tex]:
[tex]\[ 5 = \frac{5(x-2)}{x-2} \][/tex]
Now the expression becomes:
[tex]\[ \frac{\frac{5(x-2) - (x+2)}{x-2}}{x+3} \][/tex]
3. Simplify the expression inside the numerator:
[tex]\[ 5(x-2) - (x+2) = 5x - 10 - x - 2 = 4x - 12 \][/tex]
Therefore,
[tex]\[ \frac{\frac{4x - 12}{x-2}}{x+3} \][/tex]
4. Simplify the complex fraction by dividing by [tex]\(x+3\)[/tex]:
[tex]\[ \frac{4x-12}{(x-2)(x+3)} \][/tex]
5. Factor the numerator if possible:
[tex]\[ 4x - 12 = 4(x - 3) \][/tex]
So, the expression now becomes:
[tex]\[ \frac{4(x-3)}{(x-2)(x+3)} \][/tex]
Therefore, the simplified form of the expression [tex]\(\frac{5 - \frac{x+2}{x-2}}{x+3}\)[/tex] is:
[tex]\[ \frac{4(x-3)}{(x-2)(x+3)} \][/tex]
We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.