At Westonci.ca, we provide clear, reliable answers to all your questions. Join our vibrant community and get the solutions you need. Our platform provides a seamless experience for finding reliable answers from a knowledgeable network of professionals. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
Sure, let's find the product of [tex]\((k-9)^2\)[/tex] using the perfect square trinomial rule.
The perfect square trinomial rule states:
[tex]\[ (a - b)^2 = a^2 - 2ab + b^2 \][/tex]
Here, we have [tex]\(a = k\)[/tex] and [tex]\(b = 9\)[/tex]. Let's substitute [tex]\(k\)[/tex] and [tex]\(9\)[/tex] into the formula.
1. Square the first term [tex]\(a\)[/tex]:
[tex]\[ a^2 = k^2 \][/tex]
2. Subtract twice the product of the first and second term:
[tex]\[ -2ab = -2 \cdot k \cdot 9 = -18k \][/tex]
3. Add the square of the second term [tex]\(b\)[/tex]:
[tex]\[ b^2 = 9^2 = 81 \][/tex]
Putting it all together, we get:
[tex]\[ (k - 9)^2 = k^2 - 18k + 81 \][/tex]
Thus, to fill in the blanks in the given product:
- The expanded form of [tex]\((k-9)^2\)[/tex] is [tex]\(k^2 - 18k + 81\)[/tex].
So, the final answers are:
- The product [tex]\((k-9)^2\)[/tex] can also be written as [tex]\(k^2 - 18k + 81\)[/tex].
- The product is [tex]\(k^2 -\ 18k +\ 81\)[/tex].
The perfect square trinomial rule states:
[tex]\[ (a - b)^2 = a^2 - 2ab + b^2 \][/tex]
Here, we have [tex]\(a = k\)[/tex] and [tex]\(b = 9\)[/tex]. Let's substitute [tex]\(k\)[/tex] and [tex]\(9\)[/tex] into the formula.
1. Square the first term [tex]\(a\)[/tex]:
[tex]\[ a^2 = k^2 \][/tex]
2. Subtract twice the product of the first and second term:
[tex]\[ -2ab = -2 \cdot k \cdot 9 = -18k \][/tex]
3. Add the square of the second term [tex]\(b\)[/tex]:
[tex]\[ b^2 = 9^2 = 81 \][/tex]
Putting it all together, we get:
[tex]\[ (k - 9)^2 = k^2 - 18k + 81 \][/tex]
Thus, to fill in the blanks in the given product:
- The expanded form of [tex]\((k-9)^2\)[/tex] is [tex]\(k^2 - 18k + 81\)[/tex].
So, the final answers are:
- The product [tex]\((k-9)^2\)[/tex] can also be written as [tex]\(k^2 - 18k + 81\)[/tex].
- The product is [tex]\(k^2 -\ 18k +\ 81\)[/tex].
Thank you for choosing our service. We're dedicated to providing the best answers for all your questions. Visit us again. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.