Welcome to Westonci.ca, the Q&A platform where your questions are met with detailed answers from experienced experts. Explore our Q&A platform to find in-depth answers from a wide range of experts in different fields. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
Sure, let's solve the integral [tex]\(\int e^{2x} \cos 3x \, dx\)[/tex].
To solve this integral, we will use integration by parts. Integration by parts is given by the formula:
[tex]\[ \int u \, dv = uv - \int v \, du \][/tex]
Here, we'll let:
[tex]\[ u = e^{2x} \quad \text{and} \quad dv = \cos 3x \, dx \][/tex]
Now, we need to find [tex]\(du\)[/tex] and [tex]\(v\)[/tex]:
[tex]\[ du = \frac{d}{dx}(e^{2x}) \, dx = 2e^{2x} \, dx \][/tex]
[tex]\[ v = \int \cos 3x \, dx = \frac{1}{3} \sin 3x \][/tex]
Now, we apply the integration by parts formula:
[tex]\[ \int e^{2x} \cos 3x \, dx = e^{2x} \cdot \frac{1}{3} \sin 3x - \int \left( \frac{1}{3} \sin 3x \right) \cdot 2e^{2x} \, dx \][/tex]
Simplify the expression:
[tex]\[ = \frac{1}{3} e^{2x} \sin 3x - \frac{2}{3} \int e^{2x} \sin 3x \, dx \][/tex]
Now we need to solve the integral [tex]\(\int e^{2x} \sin 3x \, dx\)[/tex]. We can use integration by parts again for this integral. Let:
[tex]\[ u = e^{2x} \quad \text{and} \quad dv = \sin 3x \, dx \][/tex]
Again, find [tex]\(du\)[/tex] and [tex]\(v\)[/tex]:
[tex]\[ du = \frac{d}{dx}(e^{2x}) \, dx = 2e^{2x} \, dx \][/tex]
[tex]\[ v = \int \sin 3x \, dx = -\frac{1}{3} \cos 3x \][/tex]
Applying integration by parts formula:
[tex]\[ \int e^{2x} \sin 3x \, dx = e^{2x} \cdot \left(-\frac{1}{3} \cos 3x\right) - \int \left(-\frac{1}{3} \cos 3x \right) \cdot 2e^{2x} \, dx \][/tex]
Simplify the expression:
[tex]\[ = -\frac{1}{3} e^{2x} \cos 3x + \frac{2}{3} \int e^{2x} \cos 3x \, dx \][/tex]
Now let's denote [tex]\(\int e^{2x} \cos 3x \, dx\)[/tex] as [tex]\(I\)[/tex]. Then from the above steps:
[tex]\[ I = \frac{1}{3} e^{2x} \sin 3x - \frac{2}{3} \left( -\frac{1}{3} e^{2x} \cos 3x + \frac{2}{3} I \right) \][/tex]
[tex]\[ I = \frac{1}{3} e^{2x} \sin 3x + \frac{2}{9} e^{2x} \cos 3x - \frac{4}{9} I \][/tex]
Combine the [tex]\(I\)[/tex] terms on one side:
[tex]\[ I + \frac{4}{9} I = \frac{1}{3} e^{2x} \sin 3x + \frac{2}{9} e^{2x} \cos 3x \][/tex]
[tex]\[ \left( 1 + \frac{4}{9} \right) I = \frac{1}{3} e^{2x} \sin 3x + \frac{2}{9} e^{2x} \cos 3x \][/tex]
[tex]\[ \frac{13}{9} I = \frac{1}{3} e^{2x} \sin 3x + \frac{2}{9} e^{2x} \cos 3x \][/tex]
Solve for [tex]\(I\)[/tex]:
[tex]\[ I = \frac{9}{13} \left( \frac{1}{3} e^{2x} \sin 3x + \frac{2}{9} e^{2x} \cos 3x \right) \][/tex]
[tex]\[ I = \frac{3}{13} e^{2x} \sin 3x + \frac{2}{13} e^{2x} \cos 3x \][/tex]
Hence, the integral [tex]\(\int e^{2x} \cos 3x \, dx\)[/tex] is:
[tex]\[ \int e^{2x} \cos 3x \, dx = \frac{3}{13} e^{2x} \sin 3x + \frac{2}{13} e^{2x} \cos 3x + C \][/tex]
Where [tex]\(C\)[/tex] is the constant of integration.
To solve this integral, we will use integration by parts. Integration by parts is given by the formula:
[tex]\[ \int u \, dv = uv - \int v \, du \][/tex]
Here, we'll let:
[tex]\[ u = e^{2x} \quad \text{and} \quad dv = \cos 3x \, dx \][/tex]
Now, we need to find [tex]\(du\)[/tex] and [tex]\(v\)[/tex]:
[tex]\[ du = \frac{d}{dx}(e^{2x}) \, dx = 2e^{2x} \, dx \][/tex]
[tex]\[ v = \int \cos 3x \, dx = \frac{1}{3} \sin 3x \][/tex]
Now, we apply the integration by parts formula:
[tex]\[ \int e^{2x} \cos 3x \, dx = e^{2x} \cdot \frac{1}{3} \sin 3x - \int \left( \frac{1}{3} \sin 3x \right) \cdot 2e^{2x} \, dx \][/tex]
Simplify the expression:
[tex]\[ = \frac{1}{3} e^{2x} \sin 3x - \frac{2}{3} \int e^{2x} \sin 3x \, dx \][/tex]
Now we need to solve the integral [tex]\(\int e^{2x} \sin 3x \, dx\)[/tex]. We can use integration by parts again for this integral. Let:
[tex]\[ u = e^{2x} \quad \text{and} \quad dv = \sin 3x \, dx \][/tex]
Again, find [tex]\(du\)[/tex] and [tex]\(v\)[/tex]:
[tex]\[ du = \frac{d}{dx}(e^{2x}) \, dx = 2e^{2x} \, dx \][/tex]
[tex]\[ v = \int \sin 3x \, dx = -\frac{1}{3} \cos 3x \][/tex]
Applying integration by parts formula:
[tex]\[ \int e^{2x} \sin 3x \, dx = e^{2x} \cdot \left(-\frac{1}{3} \cos 3x\right) - \int \left(-\frac{1}{3} \cos 3x \right) \cdot 2e^{2x} \, dx \][/tex]
Simplify the expression:
[tex]\[ = -\frac{1}{3} e^{2x} \cos 3x + \frac{2}{3} \int e^{2x} \cos 3x \, dx \][/tex]
Now let's denote [tex]\(\int e^{2x} \cos 3x \, dx\)[/tex] as [tex]\(I\)[/tex]. Then from the above steps:
[tex]\[ I = \frac{1}{3} e^{2x} \sin 3x - \frac{2}{3} \left( -\frac{1}{3} e^{2x} \cos 3x + \frac{2}{3} I \right) \][/tex]
[tex]\[ I = \frac{1}{3} e^{2x} \sin 3x + \frac{2}{9} e^{2x} \cos 3x - \frac{4}{9} I \][/tex]
Combine the [tex]\(I\)[/tex] terms on one side:
[tex]\[ I + \frac{4}{9} I = \frac{1}{3} e^{2x} \sin 3x + \frac{2}{9} e^{2x} \cos 3x \][/tex]
[tex]\[ \left( 1 + \frac{4}{9} \right) I = \frac{1}{3} e^{2x} \sin 3x + \frac{2}{9} e^{2x} \cos 3x \][/tex]
[tex]\[ \frac{13}{9} I = \frac{1}{3} e^{2x} \sin 3x + \frac{2}{9} e^{2x} \cos 3x \][/tex]
Solve for [tex]\(I\)[/tex]:
[tex]\[ I = \frac{9}{13} \left( \frac{1}{3} e^{2x} \sin 3x + \frac{2}{9} e^{2x} \cos 3x \right) \][/tex]
[tex]\[ I = \frac{3}{13} e^{2x} \sin 3x + \frac{2}{13} e^{2x} \cos 3x \][/tex]
Hence, the integral [tex]\(\int e^{2x} \cos 3x \, dx\)[/tex] is:
[tex]\[ \int e^{2x} \cos 3x \, dx = \frac{3}{13} e^{2x} \sin 3x + \frac{2}{13} e^{2x} \cos 3x + C \][/tex]
Where [tex]\(C\)[/tex] is the constant of integration.
We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.