Explore Westonci.ca, the leading Q&A site where experts provide accurate and helpful answers to all your questions. Ask your questions and receive precise answers from experienced professionals across different disciplines. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
Sure, let's solve the integral [tex]\(\int e^{2x} \cos 3x \, dx\)[/tex].
To solve this integral, we will use integration by parts. Integration by parts is given by the formula:
[tex]\[ \int u \, dv = uv - \int v \, du \][/tex]
Here, we'll let:
[tex]\[ u = e^{2x} \quad \text{and} \quad dv = \cos 3x \, dx \][/tex]
Now, we need to find [tex]\(du\)[/tex] and [tex]\(v\)[/tex]:
[tex]\[ du = \frac{d}{dx}(e^{2x}) \, dx = 2e^{2x} \, dx \][/tex]
[tex]\[ v = \int \cos 3x \, dx = \frac{1}{3} \sin 3x \][/tex]
Now, we apply the integration by parts formula:
[tex]\[ \int e^{2x} \cos 3x \, dx = e^{2x} \cdot \frac{1}{3} \sin 3x - \int \left( \frac{1}{3} \sin 3x \right) \cdot 2e^{2x} \, dx \][/tex]
Simplify the expression:
[tex]\[ = \frac{1}{3} e^{2x} \sin 3x - \frac{2}{3} \int e^{2x} \sin 3x \, dx \][/tex]
Now we need to solve the integral [tex]\(\int e^{2x} \sin 3x \, dx\)[/tex]. We can use integration by parts again for this integral. Let:
[tex]\[ u = e^{2x} \quad \text{and} \quad dv = \sin 3x \, dx \][/tex]
Again, find [tex]\(du\)[/tex] and [tex]\(v\)[/tex]:
[tex]\[ du = \frac{d}{dx}(e^{2x}) \, dx = 2e^{2x} \, dx \][/tex]
[tex]\[ v = \int \sin 3x \, dx = -\frac{1}{3} \cos 3x \][/tex]
Applying integration by parts formula:
[tex]\[ \int e^{2x} \sin 3x \, dx = e^{2x} \cdot \left(-\frac{1}{3} \cos 3x\right) - \int \left(-\frac{1}{3} \cos 3x \right) \cdot 2e^{2x} \, dx \][/tex]
Simplify the expression:
[tex]\[ = -\frac{1}{3} e^{2x} \cos 3x + \frac{2}{3} \int e^{2x} \cos 3x \, dx \][/tex]
Now let's denote [tex]\(\int e^{2x} \cos 3x \, dx\)[/tex] as [tex]\(I\)[/tex]. Then from the above steps:
[tex]\[ I = \frac{1}{3} e^{2x} \sin 3x - \frac{2}{3} \left( -\frac{1}{3} e^{2x} \cos 3x + \frac{2}{3} I \right) \][/tex]
[tex]\[ I = \frac{1}{3} e^{2x} \sin 3x + \frac{2}{9} e^{2x} \cos 3x - \frac{4}{9} I \][/tex]
Combine the [tex]\(I\)[/tex] terms on one side:
[tex]\[ I + \frac{4}{9} I = \frac{1}{3} e^{2x} \sin 3x + \frac{2}{9} e^{2x} \cos 3x \][/tex]
[tex]\[ \left( 1 + \frac{4}{9} \right) I = \frac{1}{3} e^{2x} \sin 3x + \frac{2}{9} e^{2x} \cos 3x \][/tex]
[tex]\[ \frac{13}{9} I = \frac{1}{3} e^{2x} \sin 3x + \frac{2}{9} e^{2x} \cos 3x \][/tex]
Solve for [tex]\(I\)[/tex]:
[tex]\[ I = \frac{9}{13} \left( \frac{1}{3} e^{2x} \sin 3x + \frac{2}{9} e^{2x} \cos 3x \right) \][/tex]
[tex]\[ I = \frac{3}{13} e^{2x} \sin 3x + \frac{2}{13} e^{2x} \cos 3x \][/tex]
Hence, the integral [tex]\(\int e^{2x} \cos 3x \, dx\)[/tex] is:
[tex]\[ \int e^{2x} \cos 3x \, dx = \frac{3}{13} e^{2x} \sin 3x + \frac{2}{13} e^{2x} \cos 3x + C \][/tex]
Where [tex]\(C\)[/tex] is the constant of integration.
To solve this integral, we will use integration by parts. Integration by parts is given by the formula:
[tex]\[ \int u \, dv = uv - \int v \, du \][/tex]
Here, we'll let:
[tex]\[ u = e^{2x} \quad \text{and} \quad dv = \cos 3x \, dx \][/tex]
Now, we need to find [tex]\(du\)[/tex] and [tex]\(v\)[/tex]:
[tex]\[ du = \frac{d}{dx}(e^{2x}) \, dx = 2e^{2x} \, dx \][/tex]
[tex]\[ v = \int \cos 3x \, dx = \frac{1}{3} \sin 3x \][/tex]
Now, we apply the integration by parts formula:
[tex]\[ \int e^{2x} \cos 3x \, dx = e^{2x} \cdot \frac{1}{3} \sin 3x - \int \left( \frac{1}{3} \sin 3x \right) \cdot 2e^{2x} \, dx \][/tex]
Simplify the expression:
[tex]\[ = \frac{1}{3} e^{2x} \sin 3x - \frac{2}{3} \int e^{2x} \sin 3x \, dx \][/tex]
Now we need to solve the integral [tex]\(\int e^{2x} \sin 3x \, dx\)[/tex]. We can use integration by parts again for this integral. Let:
[tex]\[ u = e^{2x} \quad \text{and} \quad dv = \sin 3x \, dx \][/tex]
Again, find [tex]\(du\)[/tex] and [tex]\(v\)[/tex]:
[tex]\[ du = \frac{d}{dx}(e^{2x}) \, dx = 2e^{2x} \, dx \][/tex]
[tex]\[ v = \int \sin 3x \, dx = -\frac{1}{3} \cos 3x \][/tex]
Applying integration by parts formula:
[tex]\[ \int e^{2x} \sin 3x \, dx = e^{2x} \cdot \left(-\frac{1}{3} \cos 3x\right) - \int \left(-\frac{1}{3} \cos 3x \right) \cdot 2e^{2x} \, dx \][/tex]
Simplify the expression:
[tex]\[ = -\frac{1}{3} e^{2x} \cos 3x + \frac{2}{3} \int e^{2x} \cos 3x \, dx \][/tex]
Now let's denote [tex]\(\int e^{2x} \cos 3x \, dx\)[/tex] as [tex]\(I\)[/tex]. Then from the above steps:
[tex]\[ I = \frac{1}{3} e^{2x} \sin 3x - \frac{2}{3} \left( -\frac{1}{3} e^{2x} \cos 3x + \frac{2}{3} I \right) \][/tex]
[tex]\[ I = \frac{1}{3} e^{2x} \sin 3x + \frac{2}{9} e^{2x} \cos 3x - \frac{4}{9} I \][/tex]
Combine the [tex]\(I\)[/tex] terms on one side:
[tex]\[ I + \frac{4}{9} I = \frac{1}{3} e^{2x} \sin 3x + \frac{2}{9} e^{2x} \cos 3x \][/tex]
[tex]\[ \left( 1 + \frac{4}{9} \right) I = \frac{1}{3} e^{2x} \sin 3x + \frac{2}{9} e^{2x} \cos 3x \][/tex]
[tex]\[ \frac{13}{9} I = \frac{1}{3} e^{2x} \sin 3x + \frac{2}{9} e^{2x} \cos 3x \][/tex]
Solve for [tex]\(I\)[/tex]:
[tex]\[ I = \frac{9}{13} \left( \frac{1}{3} e^{2x} \sin 3x + \frac{2}{9} e^{2x} \cos 3x \right) \][/tex]
[tex]\[ I = \frac{3}{13} e^{2x} \sin 3x + \frac{2}{13} e^{2x} \cos 3x \][/tex]
Hence, the integral [tex]\(\int e^{2x} \cos 3x \, dx\)[/tex] is:
[tex]\[ \int e^{2x} \cos 3x \, dx = \frac{3}{13} e^{2x} \sin 3x + \frac{2}{13} e^{2x} \cos 3x + C \][/tex]
Where [tex]\(C\)[/tex] is the constant of integration.
We hope this information was helpful. Feel free to return anytime for more answers to your questions and concerns. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.