Find the best answers to your questions at Westonci.ca, where experts and enthusiasts provide accurate, reliable information. Get quick and reliable solutions to your questions from a community of experienced experts on our platform. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.

Which expressions are equivalent to [tex]\frac{\left(5^{-3}\right)^4}{5^6}[/tex]? Select all that apply.

A. [tex]\frac{5^1}{5^6}[/tex]

B. [tex]\frac{5^{-7}}{5^6}[/tex]

C. [tex]\frac{5^{-12}}{5^6}[/tex]


Sagot :

To determine which expressions are equivalent to [tex]\(\frac{(5^{-3})^4}{5^6}\)[/tex], let's go through a detailed, step-by-step solution.

1. Simplify the numerator:

The expression to simplify is [tex]\((5^{-3})^4\)[/tex].

Using the power of a power rule [tex]\((a^m)^n = a^{mn}\)[/tex], we get:
[tex]\[ (5^{-3})^4 = 5^{-3 \cdot 4} = 5^{-12} \][/tex]

So, the expression now is:
[tex]\[ \frac{5^{-12}}{5^6} \][/tex]

2. Simplify the quotient:

To simplify [tex]\(\frac{5^{-12}}{5^6}\)[/tex], we use the property of exponents [tex]\(\frac{a^m}{a^n} = a^{m-n}\)[/tex].

Applying this rule, we have:
[tex]\[ \frac{5^{-12}}{5^6} = 5^{-12-6} = 5^{-18} \][/tex]

Now we need to check which of the given expressions are equivalent to [tex]\(5^{-18}\)[/tex].

Assessing each provided expression:

- [tex]\(\frac{5^1}{5^6}\)[/tex]:

Simplify using [tex]\(\frac{a^m}{a^n} = a^{m-n}\)[/tex]:
[tex]\[ \frac{5^1}{5^6} = 5^{1-6} = 5^{-5} \][/tex]

This is not equivalent to [tex]\(5^{-18}\)[/tex].

- [tex]\(\frac{5^{-7}}{5^6}\)[/tex]:

Simplify using [tex]\(\frac{a^m}{a^n} = a^{m-n}\)[/tex]:
[tex]\[ \frac{5^{-7}}{5^6} = 5^{-7-6} = 5^{-13} \][/tex]

This is not equivalent to [tex]\(5^{-18}\)[/tex].

- [tex]\(\frac{5^{-12}}{5^6}\)[/tex]:

Simplify using [tex]\(\frac{a^m}{a^n} = a^{m-n}\)[/tex]:
[tex]\[ \frac{5^{-12}}{5^6} = 5^{-12-6} = 5^{-18} \][/tex]

This is equivalent to [tex]\(5^{-18}\)[/tex].

So, the only expression that is equivalent to [tex]\(\frac{(5^{-3})^4}{5^6}\)[/tex] is [tex]\(\frac{5^{-12}}{5^6}\)[/tex].