Discover the answers to your questions at Westonci.ca, where experts share their knowledge and insights with you. Discover precise answers to your questions from a wide range of experts on our user-friendly Q&A platform. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
To solve this problem, we need to determine a few key expressions related to the square concert stage.
### Step-by-Step Solution
1. Represent the Area Expression:
We are given the area of the square stage as:
[tex]\[ 4x^2 + 12x + 9 \text{ square feet} \][/tex]
2. Identify the Side Length of the Square:
For a square, the area [tex]\(A\)[/tex] is given by the side length squared. Hence, we need to express the given area expression in the form [tex]\( (cx + d)^2 \)[/tex].
Notice that:
[tex]\[ (2x + 3)^2 = (2x + 3)(2x + 3) = 4x^2 + 12x + 9 \][/tex]
Therefore, the side length of the square stage is:
[tex]\[ 2x + 3 \text{ feet} \][/tex]
3. Find the Perimeter of the Square:
The perimeter [tex]\(P\)[/tex] of a square is four times the side length. Thus:
[tex]\[ P = 4 \times \text{side length} = 4 \times (2x + 3) \][/tex]
4. Simplify the Perimeter Expression:
Simplifying this we get:
[tex]\[ P = 4 \times (2x + 3) = 8x + 12 \text{ feet} \][/tex]
5. Determine the Perimeter for [tex]\(x = 2\)[/tex]:
We substitute [tex]\(x = 2\)[/tex] into the perimeter expression:
[tex]\[ P = 8(2) + 12 = 16 + 12 = 28 \text{ feet} \][/tex]
### Summary
- Expression for the Perimeter:
[tex]\[ 8x + 12 \text{ feet} \][/tex]
- Perimeter when [tex]\(x = 2\)[/tex]:
[tex]\[ 28 \text{ feet} \][/tex]
Thus, the perimeter of the square concert stage when [tex]\(x = 2\)[/tex] feet is 28 feet.
### Step-by-Step Solution
1. Represent the Area Expression:
We are given the area of the square stage as:
[tex]\[ 4x^2 + 12x + 9 \text{ square feet} \][/tex]
2. Identify the Side Length of the Square:
For a square, the area [tex]\(A\)[/tex] is given by the side length squared. Hence, we need to express the given area expression in the form [tex]\( (cx + d)^2 \)[/tex].
Notice that:
[tex]\[ (2x + 3)^2 = (2x + 3)(2x + 3) = 4x^2 + 12x + 9 \][/tex]
Therefore, the side length of the square stage is:
[tex]\[ 2x + 3 \text{ feet} \][/tex]
3. Find the Perimeter of the Square:
The perimeter [tex]\(P\)[/tex] of a square is four times the side length. Thus:
[tex]\[ P = 4 \times \text{side length} = 4 \times (2x + 3) \][/tex]
4. Simplify the Perimeter Expression:
Simplifying this we get:
[tex]\[ P = 4 \times (2x + 3) = 8x + 12 \text{ feet} \][/tex]
5. Determine the Perimeter for [tex]\(x = 2\)[/tex]:
We substitute [tex]\(x = 2\)[/tex] into the perimeter expression:
[tex]\[ P = 8(2) + 12 = 16 + 12 = 28 \text{ feet} \][/tex]
### Summary
- Expression for the Perimeter:
[tex]\[ 8x + 12 \text{ feet} \][/tex]
- Perimeter when [tex]\(x = 2\)[/tex]:
[tex]\[ 28 \text{ feet} \][/tex]
Thus, the perimeter of the square concert stage when [tex]\(x = 2\)[/tex] feet is 28 feet.
We appreciate your time. Please revisit us for more reliable answers to any questions you may have. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.