Discover the answers you need at Westonci.ca, a dynamic Q&A platform where knowledge is shared freely by a community of experts. Find reliable answers to your questions from a wide community of knowledgeable experts on our user-friendly Q&A platform. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
Let's analyze the problem where the angle [tex]\(\theta\)[/tex] is [tex]\(\frac{5 \pi}{4}\)[/tex]. We need to determine which of the given statements are true.
1. The measure of the reference angle is [tex]\(45^{\circ}\)[/tex].
Since [tex]\(\theta = \frac{5 \pi}{4}\)[/tex] is located in the third quadrant, the reference angle is calculated by subtracting [tex]\(\pi\)[/tex] from [tex]\(\theta\)[/tex]:
[tex]\[ \text{Reference angle} = \theta - \pi = \frac{5 \pi}{4} - \pi = \frac{5 \pi}{4} - \frac{4 \pi}{4} = \frac{\pi}{4} \][/tex]
Converting this reference angle to degrees:
[tex]\[ \frac{\pi}{4} \times \frac{180^{\circ}}{\pi} = 45^{\circ} \][/tex]
Thus, the statement "The measure of the reference angle is [tex]\(45^{\circ}\)[/tex]" is true.
2. [tex]\(\tan(\theta) = 1\)[/tex]
The tangent function for an angle in the third quadrant is positive and for [tex]\(\theta = \frac{5 \pi}{4}\)[/tex], the value is:
[tex]\[ \tan\left(\frac{5 \pi}{4}\right) = 1 \][/tex]
Therefore, the statement "[tex]\(\tan(\theta) = 1\)[/tex]" is true.
3. The measure of the reference angle is [tex]\(30^{\circ}\)[/tex].
From our previous calculation, we found that the reference angle is [tex]\(45^{\circ}\)[/tex]. Therefore, the statement "The measure of the reference angle is [tex]\(30^{\circ}\)[/tex]" is false.
4. [tex]\(\sin(\theta) = \frac{\sqrt{2}}{2}\)[/tex]
For [tex]\(\theta = \frac{5 \pi}{4}\)[/tex] in the third quadrant:
[tex]\[ \sin\left(\frac{5 \pi}{4}\right) = -\frac{\sqrt{2}}{2} \][/tex]
Therefore, the statement "[tex]\(\sin(\theta) = \frac{\sqrt{2}}{2}\)[/tex]" is false.
5. [tex]\(\cos(\theta) = \frac{\sqrt{2}}{2}\)[/tex]
Similarly, for the cosine function in the third quadrant:
[tex]\[ \cos\left(\frac{5 \pi}{4}\right) = -\frac{\sqrt{2}}{2} \][/tex]
Therefore, the statement "[tex]\(\cos(\theta) = \frac{\sqrt{2}}{2}\)[/tex]" is false.
6. The measure of the reference angle is [tex]\(60^{\circ}\)[/tex].
Again, from our previous reference angle calculation, we know the reference angle is [tex]\(45^{\circ}\)[/tex]. Therefore, the statement "The measure of the reference angle is [tex]\(60^{\circ}\)[/tex]" is false.
Summarizing the true statements:
- The measure of the reference angle is [tex]\(45^{\circ}\)[/tex].
- [tex]\(\tan(\theta) = 1\)[/tex].
1. The measure of the reference angle is [tex]\(45^{\circ}\)[/tex].
Since [tex]\(\theta = \frac{5 \pi}{4}\)[/tex] is located in the third quadrant, the reference angle is calculated by subtracting [tex]\(\pi\)[/tex] from [tex]\(\theta\)[/tex]:
[tex]\[ \text{Reference angle} = \theta - \pi = \frac{5 \pi}{4} - \pi = \frac{5 \pi}{4} - \frac{4 \pi}{4} = \frac{\pi}{4} \][/tex]
Converting this reference angle to degrees:
[tex]\[ \frac{\pi}{4} \times \frac{180^{\circ}}{\pi} = 45^{\circ} \][/tex]
Thus, the statement "The measure of the reference angle is [tex]\(45^{\circ}\)[/tex]" is true.
2. [tex]\(\tan(\theta) = 1\)[/tex]
The tangent function for an angle in the third quadrant is positive and for [tex]\(\theta = \frac{5 \pi}{4}\)[/tex], the value is:
[tex]\[ \tan\left(\frac{5 \pi}{4}\right) = 1 \][/tex]
Therefore, the statement "[tex]\(\tan(\theta) = 1\)[/tex]" is true.
3. The measure of the reference angle is [tex]\(30^{\circ}\)[/tex].
From our previous calculation, we found that the reference angle is [tex]\(45^{\circ}\)[/tex]. Therefore, the statement "The measure of the reference angle is [tex]\(30^{\circ}\)[/tex]" is false.
4. [tex]\(\sin(\theta) = \frac{\sqrt{2}}{2}\)[/tex]
For [tex]\(\theta = \frac{5 \pi}{4}\)[/tex] in the third quadrant:
[tex]\[ \sin\left(\frac{5 \pi}{4}\right) = -\frac{\sqrt{2}}{2} \][/tex]
Therefore, the statement "[tex]\(\sin(\theta) = \frac{\sqrt{2}}{2}\)[/tex]" is false.
5. [tex]\(\cos(\theta) = \frac{\sqrt{2}}{2}\)[/tex]
Similarly, for the cosine function in the third quadrant:
[tex]\[ \cos\left(\frac{5 \pi}{4}\right) = -\frac{\sqrt{2}}{2} \][/tex]
Therefore, the statement "[tex]\(\cos(\theta) = \frac{\sqrt{2}}{2}\)[/tex]" is false.
6. The measure of the reference angle is [tex]\(60^{\circ}\)[/tex].
Again, from our previous reference angle calculation, we know the reference angle is [tex]\(45^{\circ}\)[/tex]. Therefore, the statement "The measure of the reference angle is [tex]\(60^{\circ}\)[/tex]" is false.
Summarizing the true statements:
- The measure of the reference angle is [tex]\(45^{\circ}\)[/tex].
- [tex]\(\tan(\theta) = 1\)[/tex].
We hope this was helpful. Please come back whenever you need more information or answers to your queries. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.