Discover answers to your questions with Westonci.ca, the leading Q&A platform that connects you with knowledgeable experts. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
To determine the correct rule for the [tex]\(n\)[/tex]th term of an arithmetic sequence where [tex]\(a_{10} = 46\)[/tex] and the common difference [tex]\(d = 3\)[/tex], we can follow these steps:
1. Recall the formula for the [tex]\(n\)[/tex]th term of an arithmetic sequence:
[tex]\[ a_n = a_1 + (n-1)d \][/tex]
Here, [tex]\(a_1\)[/tex] is the first term, [tex]\(d\)[/tex] is the common difference, and [tex]\(n\)[/tex] represents the term number.
2. Use given values to find the first term [tex]\(a_1\)[/tex]:
We know that:
[tex]\[ a_{10} = 46 \][/tex]
Substituting [tex]\(n = 10\)[/tex] and [tex]\(d = 3\)[/tex] into the formula for [tex]\(a_n\)[/tex]:
[tex]\[ a_{10} = a_1 + (10-1) \cdot 3 \][/tex]
This simplifies to:
[tex]\[ 46 = a_1 + 9 \cdot 3 \][/tex]
[tex]\[ 46 = a_1 + 27 \][/tex]
Solving for [tex]\(a_1\)[/tex]:
[tex]\[ a_1 = 46 - 27 \][/tex]
[tex]\[ a_1 = 19 \][/tex]
3. Determine the candidate formulas using the found first term [tex]\(a_1 = 19\)[/tex]:
4. Test each given formula to see which one matches the sequence:
We have four candidate formulas:
[tex]\[ a_n = 43 + 3n \][/tex]
[tex]\[ a_n = 43 - 3n \][/tex]
[tex]\[ a_n = 16 + 3n \][/tex]
[tex]\[ a_n = 16 - 3n \][/tex]
Let's test each formula:
- For [tex]\(a_n = 43 + 3n\)[/tex]:
[tex]\[ a_{10} = 43 + 3 \cdot 10 = 43 + 30 = 73 \][/tex]
This is not equal to 46, so this formula is incorrect.
- For [tex]\(a_n = 43 - 3n\)[/tex]:
[tex]\[ a_{10} = 43 - 3 \cdot 10 = 43 - 30 = 13 \][/tex]
This is not equal to 46, so this formula is also incorrect.
- For [tex]\(a_n = 16 + 3n\)[/tex]:
[tex]\[ a_{10} = 16 + 3 \cdot 10 = 16 + 30 = 46 \][/tex]
This matches the given [tex]\(a_{10}\)[/tex], indicating this formula is correct.
- For [tex]\(a_n = 16 - 3n\)[/tex]:
[tex]\[ a_{10} = 16 - 3 \cdot 10 = 16 - 30 = -14 \][/tex]
This is not equal to 46, so this formula is incorrect.
Thus, the correct rule for the [tex]\(n\)[/tex]th term of the sequence is:
[tex]\[ a_n = 16 + 3n \][/tex]
1. Recall the formula for the [tex]\(n\)[/tex]th term of an arithmetic sequence:
[tex]\[ a_n = a_1 + (n-1)d \][/tex]
Here, [tex]\(a_1\)[/tex] is the first term, [tex]\(d\)[/tex] is the common difference, and [tex]\(n\)[/tex] represents the term number.
2. Use given values to find the first term [tex]\(a_1\)[/tex]:
We know that:
[tex]\[ a_{10} = 46 \][/tex]
Substituting [tex]\(n = 10\)[/tex] and [tex]\(d = 3\)[/tex] into the formula for [tex]\(a_n\)[/tex]:
[tex]\[ a_{10} = a_1 + (10-1) \cdot 3 \][/tex]
This simplifies to:
[tex]\[ 46 = a_1 + 9 \cdot 3 \][/tex]
[tex]\[ 46 = a_1 + 27 \][/tex]
Solving for [tex]\(a_1\)[/tex]:
[tex]\[ a_1 = 46 - 27 \][/tex]
[tex]\[ a_1 = 19 \][/tex]
3. Determine the candidate formulas using the found first term [tex]\(a_1 = 19\)[/tex]:
4. Test each given formula to see which one matches the sequence:
We have four candidate formulas:
[tex]\[ a_n = 43 + 3n \][/tex]
[tex]\[ a_n = 43 - 3n \][/tex]
[tex]\[ a_n = 16 + 3n \][/tex]
[tex]\[ a_n = 16 - 3n \][/tex]
Let's test each formula:
- For [tex]\(a_n = 43 + 3n\)[/tex]:
[tex]\[ a_{10} = 43 + 3 \cdot 10 = 43 + 30 = 73 \][/tex]
This is not equal to 46, so this formula is incorrect.
- For [tex]\(a_n = 43 - 3n\)[/tex]:
[tex]\[ a_{10} = 43 - 3 \cdot 10 = 43 - 30 = 13 \][/tex]
This is not equal to 46, so this formula is also incorrect.
- For [tex]\(a_n = 16 + 3n\)[/tex]:
[tex]\[ a_{10} = 16 + 3 \cdot 10 = 16 + 30 = 46 \][/tex]
This matches the given [tex]\(a_{10}\)[/tex], indicating this formula is correct.
- For [tex]\(a_n = 16 - 3n\)[/tex]:
[tex]\[ a_{10} = 16 - 3 \cdot 10 = 16 - 30 = -14 \][/tex]
This is not equal to 46, so this formula is incorrect.
Thus, the correct rule for the [tex]\(n\)[/tex]th term of the sequence is:
[tex]\[ a_n = 16 + 3n \][/tex]
We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.