Westonci.ca is the trusted Q&A platform where you can get reliable answers from a community of knowledgeable contributors. Our Q&A platform provides quick and trustworthy answers to your questions from experienced professionals in different areas of expertise. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
To determine the 33rd term of the given arithmetic sequence [tex]\( 12, 7, 2, -3, -8, \ldots \)[/tex], we can use the formula for the [tex]\( n \)[/tex]-th term of an arithmetic sequence. The formula is:
[tex]\[ a_n = a_1 + (n-1) \cdot d \][/tex]
Where:
- [tex]\( a_n \)[/tex] is the [tex]\( n \)[/tex]-th term,
- [tex]\( a_1 \)[/tex] is the first term,
- [tex]\( n \)[/tex] is the term number,
- [tex]\( d \)[/tex] is the common difference.
### Step-by-Step Solution:
1. Identify the first term ([tex]\( a_1 \)[/tex]):
The first term of the sequence is [tex]\( a_1 = 12 \)[/tex].
2. Determine the common difference ([tex]\( d \)[/tex]):
The common difference is the difference between consecutive terms. Calculating the difference between the first and second terms:
[tex]\[ d = 7 - 12 = -5 \][/tex]
3. Identify the term number ([tex]\( n \)[/tex]):
We are asked to find the 33rd term, so [tex]\( n = 33 \)[/tex].
4. Plug these values into the [tex]\( n \)[/tex]-th term formula:
[tex]\[ a_{33} = 12 + (33-1) \cdot (-5) \][/tex]
Simplifying inside the parentheses:
[tex]\[ a_{33} = 12 + 32 \cdot (-5) \][/tex]
Now, multiply:
[tex]\[ a_{33} = 12 + (-160) \][/tex]
Combine the terms:
[tex]\[ a_{33} = 12 - 160 \][/tex]
[tex]\[ a_{33} = -148 \][/tex]
### Conclusion:
The 33rd term of the given arithmetic sequence is [tex]\(-148\)[/tex].
Therefore, the correct answer is:
[tex]\[ \boxed{-148} \][/tex]
[tex]\[ a_n = a_1 + (n-1) \cdot d \][/tex]
Where:
- [tex]\( a_n \)[/tex] is the [tex]\( n \)[/tex]-th term,
- [tex]\( a_1 \)[/tex] is the first term,
- [tex]\( n \)[/tex] is the term number,
- [tex]\( d \)[/tex] is the common difference.
### Step-by-Step Solution:
1. Identify the first term ([tex]\( a_1 \)[/tex]):
The first term of the sequence is [tex]\( a_1 = 12 \)[/tex].
2. Determine the common difference ([tex]\( d \)[/tex]):
The common difference is the difference between consecutive terms. Calculating the difference between the first and second terms:
[tex]\[ d = 7 - 12 = -5 \][/tex]
3. Identify the term number ([tex]\( n \)[/tex]):
We are asked to find the 33rd term, so [tex]\( n = 33 \)[/tex].
4. Plug these values into the [tex]\( n \)[/tex]-th term formula:
[tex]\[ a_{33} = 12 + (33-1) \cdot (-5) \][/tex]
Simplifying inside the parentheses:
[tex]\[ a_{33} = 12 + 32 \cdot (-5) \][/tex]
Now, multiply:
[tex]\[ a_{33} = 12 + (-160) \][/tex]
Combine the terms:
[tex]\[ a_{33} = 12 - 160 \][/tex]
[tex]\[ a_{33} = -148 \][/tex]
### Conclusion:
The 33rd term of the given arithmetic sequence is [tex]\(-148\)[/tex].
Therefore, the correct answer is:
[tex]\[ \boxed{-148} \][/tex]
Thanks for using our service. We aim to provide the most accurate answers for all your queries. Visit us again for more insights. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.