Welcome to Westonci.ca, where you can find answers to all your questions from a community of experienced professionals. Our platform provides a seamless experience for finding reliable answers from a knowledgeable network of professionals. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
To determine the 33rd term of the given arithmetic sequence [tex]\( 12, 7, 2, -3, -8, \ldots \)[/tex], we can use the formula for the [tex]\( n \)[/tex]-th term of an arithmetic sequence. The formula is:
[tex]\[ a_n = a_1 + (n-1) \cdot d \][/tex]
Where:
- [tex]\( a_n \)[/tex] is the [tex]\( n \)[/tex]-th term,
- [tex]\( a_1 \)[/tex] is the first term,
- [tex]\( n \)[/tex] is the term number,
- [tex]\( d \)[/tex] is the common difference.
### Step-by-Step Solution:
1. Identify the first term ([tex]\( a_1 \)[/tex]):
The first term of the sequence is [tex]\( a_1 = 12 \)[/tex].
2. Determine the common difference ([tex]\( d \)[/tex]):
The common difference is the difference between consecutive terms. Calculating the difference between the first and second terms:
[tex]\[ d = 7 - 12 = -5 \][/tex]
3. Identify the term number ([tex]\( n \)[/tex]):
We are asked to find the 33rd term, so [tex]\( n = 33 \)[/tex].
4. Plug these values into the [tex]\( n \)[/tex]-th term formula:
[tex]\[ a_{33} = 12 + (33-1) \cdot (-5) \][/tex]
Simplifying inside the parentheses:
[tex]\[ a_{33} = 12 + 32 \cdot (-5) \][/tex]
Now, multiply:
[tex]\[ a_{33} = 12 + (-160) \][/tex]
Combine the terms:
[tex]\[ a_{33} = 12 - 160 \][/tex]
[tex]\[ a_{33} = -148 \][/tex]
### Conclusion:
The 33rd term of the given arithmetic sequence is [tex]\(-148\)[/tex].
Therefore, the correct answer is:
[tex]\[ \boxed{-148} \][/tex]
[tex]\[ a_n = a_1 + (n-1) \cdot d \][/tex]
Where:
- [tex]\( a_n \)[/tex] is the [tex]\( n \)[/tex]-th term,
- [tex]\( a_1 \)[/tex] is the first term,
- [tex]\( n \)[/tex] is the term number,
- [tex]\( d \)[/tex] is the common difference.
### Step-by-Step Solution:
1. Identify the first term ([tex]\( a_1 \)[/tex]):
The first term of the sequence is [tex]\( a_1 = 12 \)[/tex].
2. Determine the common difference ([tex]\( d \)[/tex]):
The common difference is the difference between consecutive terms. Calculating the difference between the first and second terms:
[tex]\[ d = 7 - 12 = -5 \][/tex]
3. Identify the term number ([tex]\( n \)[/tex]):
We are asked to find the 33rd term, so [tex]\( n = 33 \)[/tex].
4. Plug these values into the [tex]\( n \)[/tex]-th term formula:
[tex]\[ a_{33} = 12 + (33-1) \cdot (-5) \][/tex]
Simplifying inside the parentheses:
[tex]\[ a_{33} = 12 + 32 \cdot (-5) \][/tex]
Now, multiply:
[tex]\[ a_{33} = 12 + (-160) \][/tex]
Combine the terms:
[tex]\[ a_{33} = 12 - 160 \][/tex]
[tex]\[ a_{33} = -148 \][/tex]
### Conclusion:
The 33rd term of the given arithmetic sequence is [tex]\(-148\)[/tex].
Therefore, the correct answer is:
[tex]\[ \boxed{-148} \][/tex]
Thank you for visiting our platform. We hope you found the answers you were looking for. Come back anytime you need more information. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.