Discover the answers to your questions at Westonci.ca, where experts share their knowledge and insights with you. Explore thousands of questions and answers from a knowledgeable community of experts on our user-friendly platform. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
Let's examine the two statements given in the question and determine the correct choice step-by-step.
Statement-1 (Assertion):
- The product of the rational numbers [tex]\(\frac{1}{2}\)[/tex] and [tex]\(\frac{5}{7}\)[/tex] is [tex]\(\frac{5}{14}\)[/tex], which is a rational number.
Verification of Statement-1:
1. Multiply [tex]\(\frac{1}{2}\)[/tex] and [tex]\(\frac{5}{7}\)[/tex]:
[tex]\[ \frac{1}{2} \times \frac{5}{7} = \frac{1 \times 5}{2 \times 7} = \frac{5}{14} \][/tex]
2. [tex]\(\frac{5}{14}\)[/tex] is indeed a rational number because it is the ratio of two integers (5 and 14) where the denominator is not zero.
So, Statement-1 is true.
Statement-2 (Reason):
- Rational numbers are closed under multiplication.
- This means that if you multiply any two rational numbers, the result is always a rational number.
Verification of Statement-2:
- By definition, rational numbers are numbers that can be expressed as the quotient or fraction [tex]\(\frac{a}{b}\)[/tex] of two integers [tex]\(a\)[/tex] (the numerator) and [tex]\(b\)[/tex] (the denominator), where [tex]\(b \neq 0\)[/tex].
- When you multiply two rational numbers [tex]\(\frac{p}{q}\)[/tex] and [tex]\(\frac{r}{s}\)[/tex], the result is [tex]\(\frac{p \cdot r}{q \cdot s}\)[/tex].
- Since [tex]\(p\)[/tex], [tex]\(q\)[/tex], [tex]\(r\)[/tex], and [tex]\(s\)[/tex] are integers and [tex]\(q\)[/tex] and [tex]\(s\)[/tex] are not zero, [tex]\(\frac{p \cdot r}{q \cdot s}\)[/tex] is also a rational number.
So, Statement-2 is true.
Relationship between the Statements:
- Statement-2 explains why the product of two specific rational numbers [tex]\(\frac{1}{2}\)[/tex] and [tex]\(\frac{5}{7}\)[/tex] is also a rational number ([tex]\(\frac{5}{14}\)[/tex]).
- Therefore, Statement-2 is the correct explanation for Statement-1.
Given the above analysis, the correct choice is:
(a) Statement-I and II are true. Statement-II is correct explanation of I.
Statement-1 (Assertion):
- The product of the rational numbers [tex]\(\frac{1}{2}\)[/tex] and [tex]\(\frac{5}{7}\)[/tex] is [tex]\(\frac{5}{14}\)[/tex], which is a rational number.
Verification of Statement-1:
1. Multiply [tex]\(\frac{1}{2}\)[/tex] and [tex]\(\frac{5}{7}\)[/tex]:
[tex]\[ \frac{1}{2} \times \frac{5}{7} = \frac{1 \times 5}{2 \times 7} = \frac{5}{14} \][/tex]
2. [tex]\(\frac{5}{14}\)[/tex] is indeed a rational number because it is the ratio of two integers (5 and 14) where the denominator is not zero.
So, Statement-1 is true.
Statement-2 (Reason):
- Rational numbers are closed under multiplication.
- This means that if you multiply any two rational numbers, the result is always a rational number.
Verification of Statement-2:
- By definition, rational numbers are numbers that can be expressed as the quotient or fraction [tex]\(\frac{a}{b}\)[/tex] of two integers [tex]\(a\)[/tex] (the numerator) and [tex]\(b\)[/tex] (the denominator), where [tex]\(b \neq 0\)[/tex].
- When you multiply two rational numbers [tex]\(\frac{p}{q}\)[/tex] and [tex]\(\frac{r}{s}\)[/tex], the result is [tex]\(\frac{p \cdot r}{q \cdot s}\)[/tex].
- Since [tex]\(p\)[/tex], [tex]\(q\)[/tex], [tex]\(r\)[/tex], and [tex]\(s\)[/tex] are integers and [tex]\(q\)[/tex] and [tex]\(s\)[/tex] are not zero, [tex]\(\frac{p \cdot r}{q \cdot s}\)[/tex] is also a rational number.
So, Statement-2 is true.
Relationship between the Statements:
- Statement-2 explains why the product of two specific rational numbers [tex]\(\frac{1}{2}\)[/tex] and [tex]\(\frac{5}{7}\)[/tex] is also a rational number ([tex]\(\frac{5}{14}\)[/tex]).
- Therefore, Statement-2 is the correct explanation for Statement-1.
Given the above analysis, the correct choice is:
(a) Statement-I and II are true. Statement-II is correct explanation of I.
We hope our answers were helpful. Return anytime for more information and answers to any other questions you may have. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.