Westonci.ca is the premier destination for reliable answers to your questions, provided by a community of experts. Ask your questions and receive precise answers from experienced professionals across different disciplines. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
To solve the given expression [tex]\(\frac{a^3 b^5}{a^2 b}\)[/tex], we need to simplify both the numerator and the denominator by using the properties of exponents.
The given expression is:
[tex]\[ \frac{a^3 b^5}{a^2 b} \][/tex]
Let's break it down step by step:
1. Simplify the [tex]\(a\)[/tex] terms:
- In the numerator, we have [tex]\(a^3\)[/tex].
- In the denominator, we have [tex]\(a^2\)[/tex].
- Using the property of exponents [tex]\(\frac{a^m}{a^n} = a^{m-n}\)[/tex], we can simplify [tex]\(\frac{a^3}{a^2}\)[/tex] as follows:
[tex]\[ \frac{a^3}{a^2} = a^{3-2} = a^1 = a \][/tex]
2. Simplify the [tex]\(b\)[/tex] terms:
- In the numerator, we have [tex]\(b^5\)[/tex].
- In the denominator, we have [tex]\(b\)[/tex] (which is equivalent to [tex]\(b^1\)[/tex]).
- Using the property of exponents [tex]\(\frac{b^m}{b^n} = b^{m-n}\)[/tex], we can simplify [tex]\(\frac{b^5}{b}\)[/tex] as follows:
[tex]\[ \frac{b^5}{b} = b^{5-1} = b^4 \][/tex]
3. Combine the simplified terms:
- After simplifying both the [tex]\(a\)[/tex] and [tex]\(b\)[/tex] terms, we get:
[tex]\[ a \cdot b^4 \][/tex]
Therefore, the expression [tex]\(\frac{a^3 b^5}{a^2 b}\)[/tex] simplifies to:
[tex]\[ a b^4 \][/tex]
So, the correct answer is:
[tex]\[ \boxed{D} \][/tex]
The given expression is:
[tex]\[ \frac{a^3 b^5}{a^2 b} \][/tex]
Let's break it down step by step:
1. Simplify the [tex]\(a\)[/tex] terms:
- In the numerator, we have [tex]\(a^3\)[/tex].
- In the denominator, we have [tex]\(a^2\)[/tex].
- Using the property of exponents [tex]\(\frac{a^m}{a^n} = a^{m-n}\)[/tex], we can simplify [tex]\(\frac{a^3}{a^2}\)[/tex] as follows:
[tex]\[ \frac{a^3}{a^2} = a^{3-2} = a^1 = a \][/tex]
2. Simplify the [tex]\(b\)[/tex] terms:
- In the numerator, we have [tex]\(b^5\)[/tex].
- In the denominator, we have [tex]\(b\)[/tex] (which is equivalent to [tex]\(b^1\)[/tex]).
- Using the property of exponents [tex]\(\frac{b^m}{b^n} = b^{m-n}\)[/tex], we can simplify [tex]\(\frac{b^5}{b}\)[/tex] as follows:
[tex]\[ \frac{b^5}{b} = b^{5-1} = b^4 \][/tex]
3. Combine the simplified terms:
- After simplifying both the [tex]\(a\)[/tex] and [tex]\(b\)[/tex] terms, we get:
[tex]\[ a \cdot b^4 \][/tex]
Therefore, the expression [tex]\(\frac{a^3 b^5}{a^2 b}\)[/tex] simplifies to:
[tex]\[ a b^4 \][/tex]
So, the correct answer is:
[tex]\[ \boxed{D} \][/tex]
Thanks for stopping by. We are committed to providing the best answers for all your questions. See you again soon. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.