Westonci.ca is the premier destination for reliable answers to your questions, brought to you by a community of experts. Join our Q&A platform to connect with experts dedicated to providing precise answers to your questions in different areas. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
To solve the given expression [tex]\(\frac{a^3 b^5}{a^2 b}\)[/tex], we need to simplify both the numerator and the denominator by using the properties of exponents.
The given expression is:
[tex]\[ \frac{a^3 b^5}{a^2 b} \][/tex]
Let's break it down step by step:
1. Simplify the [tex]\(a\)[/tex] terms:
- In the numerator, we have [tex]\(a^3\)[/tex].
- In the denominator, we have [tex]\(a^2\)[/tex].
- Using the property of exponents [tex]\(\frac{a^m}{a^n} = a^{m-n}\)[/tex], we can simplify [tex]\(\frac{a^3}{a^2}\)[/tex] as follows:
[tex]\[ \frac{a^3}{a^2} = a^{3-2} = a^1 = a \][/tex]
2. Simplify the [tex]\(b\)[/tex] terms:
- In the numerator, we have [tex]\(b^5\)[/tex].
- In the denominator, we have [tex]\(b\)[/tex] (which is equivalent to [tex]\(b^1\)[/tex]).
- Using the property of exponents [tex]\(\frac{b^m}{b^n} = b^{m-n}\)[/tex], we can simplify [tex]\(\frac{b^5}{b}\)[/tex] as follows:
[tex]\[ \frac{b^5}{b} = b^{5-1} = b^4 \][/tex]
3. Combine the simplified terms:
- After simplifying both the [tex]\(a\)[/tex] and [tex]\(b\)[/tex] terms, we get:
[tex]\[ a \cdot b^4 \][/tex]
Therefore, the expression [tex]\(\frac{a^3 b^5}{a^2 b}\)[/tex] simplifies to:
[tex]\[ a b^4 \][/tex]
So, the correct answer is:
[tex]\[ \boxed{D} \][/tex]
The given expression is:
[tex]\[ \frac{a^3 b^5}{a^2 b} \][/tex]
Let's break it down step by step:
1. Simplify the [tex]\(a\)[/tex] terms:
- In the numerator, we have [tex]\(a^3\)[/tex].
- In the denominator, we have [tex]\(a^2\)[/tex].
- Using the property of exponents [tex]\(\frac{a^m}{a^n} = a^{m-n}\)[/tex], we can simplify [tex]\(\frac{a^3}{a^2}\)[/tex] as follows:
[tex]\[ \frac{a^3}{a^2} = a^{3-2} = a^1 = a \][/tex]
2. Simplify the [tex]\(b\)[/tex] terms:
- In the numerator, we have [tex]\(b^5\)[/tex].
- In the denominator, we have [tex]\(b\)[/tex] (which is equivalent to [tex]\(b^1\)[/tex]).
- Using the property of exponents [tex]\(\frac{b^m}{b^n} = b^{m-n}\)[/tex], we can simplify [tex]\(\frac{b^5}{b}\)[/tex] as follows:
[tex]\[ \frac{b^5}{b} = b^{5-1} = b^4 \][/tex]
3. Combine the simplified terms:
- After simplifying both the [tex]\(a\)[/tex] and [tex]\(b\)[/tex] terms, we get:
[tex]\[ a \cdot b^4 \][/tex]
Therefore, the expression [tex]\(\frac{a^3 b^5}{a^2 b}\)[/tex] simplifies to:
[tex]\[ a b^4 \][/tex]
So, the correct answer is:
[tex]\[ \boxed{D} \][/tex]
We hope this was helpful. Please come back whenever you need more information or answers to your queries. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.