Welcome to Westonci.ca, the ultimate question and answer platform. Get expert answers to your questions quickly and accurately. Connect with a community of experts ready to help you find solutions to your questions quickly and accurately. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
To solve this problem, let's break it down step-by-step:
1. Understanding an Arithmetic Sequence:
In an arithmetic sequence, each term after the first is formed by adding a constant difference to the previous term. For this case, we are given that 5 is added to each term to get the next term.
2. Identifying the Correct Recursive Formula:
- A recursive formula for an arithmetic sequence usually expresses the next term [tex]\( f(n+1) \)[/tex] in terms of the previous term [tex]\( f(n) \)[/tex] plus a constant difference.
- Since 5 is the constant difference given in the problem, we want a formula where [tex]\( f(n+1) \)[/tex] is the previous term [tex]\( f(n) \)[/tex] plus 5.
3. Evaluating the Given Options:
Let's evaluate each provided option to identify which one correctly represents this pattern:
- [tex]\( f(n+1) = f(n) + 5 \)[/tex]:
This formula reads as "the next term is the previous term plus 5," which matches our understanding of the given arithmetic sequence.
- [tex]\( f(n+1) = f(n + 5) \)[/tex]:
This would imply that the next term is equal to the term five positions ahead, which is not consistent with adding a constant difference of 5 to get the next term.
- [tex]\( f(n+1) = 5 f(n) \)[/tex]:
This would imply that the next term is five times the previous term, which is a geometric progression, not an arithmetic one.
- [tex]\( f(n+1) = f(5n) \)[/tex]:
This suggests the next term is some term that is dependent linearly on the position [tex]\( n \)[/tex], multiplied by 5. This does not match the given arithmetic sequence pattern either.
4. Conclusion:
The correct recursive formula that represents the arithmetic sequence where 5 is added to each term to get the next term is:
[tex]\[ f(n+1) = f(n) + 5 \][/tex]
This matches our expected pattern for an arithmetic sequence with a common difference of 5.
1. Understanding an Arithmetic Sequence:
In an arithmetic sequence, each term after the first is formed by adding a constant difference to the previous term. For this case, we are given that 5 is added to each term to get the next term.
2. Identifying the Correct Recursive Formula:
- A recursive formula for an arithmetic sequence usually expresses the next term [tex]\( f(n+1) \)[/tex] in terms of the previous term [tex]\( f(n) \)[/tex] plus a constant difference.
- Since 5 is the constant difference given in the problem, we want a formula where [tex]\( f(n+1) \)[/tex] is the previous term [tex]\( f(n) \)[/tex] plus 5.
3. Evaluating the Given Options:
Let's evaluate each provided option to identify which one correctly represents this pattern:
- [tex]\( f(n+1) = f(n) + 5 \)[/tex]:
This formula reads as "the next term is the previous term plus 5," which matches our understanding of the given arithmetic sequence.
- [tex]\( f(n+1) = f(n + 5) \)[/tex]:
This would imply that the next term is equal to the term five positions ahead, which is not consistent with adding a constant difference of 5 to get the next term.
- [tex]\( f(n+1) = 5 f(n) \)[/tex]:
This would imply that the next term is five times the previous term, which is a geometric progression, not an arithmetic one.
- [tex]\( f(n+1) = f(5n) \)[/tex]:
This suggests the next term is some term that is dependent linearly on the position [tex]\( n \)[/tex], multiplied by 5. This does not match the given arithmetic sequence pattern either.
4. Conclusion:
The correct recursive formula that represents the arithmetic sequence where 5 is added to each term to get the next term is:
[tex]\[ f(n+1) = f(n) + 5 \][/tex]
This matches our expected pattern for an arithmetic sequence with a common difference of 5.
Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.