At Westonci.ca, we make it easy for you to get the answers you need from a community of knowledgeable individuals. Get quick and reliable solutions to your questions from knowledgeable professionals on our comprehensive Q&A platform. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
To factor the quadratic expression [tex]\( 9x^2 + 3x - 2 \)[/tex], we need to find two binomials whose product gives us this polynomial. Here are the steps to solve this problem.
1. Write down the polynomial:
[tex]\[ 9x^2 + 3x - 2 \][/tex]
2. Identify the terms in the polynomial:
- The coefficient of [tex]\( x^2 \)[/tex] is 9.
- The coefficient of [tex]\( x \)[/tex] is 3.
- The constant term is -2.
3. Find two numbers that multiply to give the product of the leading coefficient (9) and the constant term (-2).
The product of 9 and -2 is:
[tex]\[ 9 \cdot (-2) = -18 \][/tex]
4. We need two numbers that multiply to -18 and add up to the middle coefficient, 3. These numbers are 6 and -3 because:
[tex]\[ 6 \times (-3) = -18 \][/tex]
[tex]\[ 6 + (-3) = 3 \][/tex]
5. Rewrite the middle term using the two numbers found:
[tex]\[ 9x^2 + 6x - 3x - 2 \][/tex]
6. Factor by grouping:
Group the terms to factor out the common factors:
[tex]\[ (9x^2 + 6x) + (-3x - 2) \][/tex]
Factor out the greatest common factor from each group:
[tex]\[ 3x(3x + 2) - 1(3x + 2) \][/tex]
7. Factor out the common binomial factor:
Notice that [tex]\( 3x + 2 \)[/tex] is a common factor:
[tex]\[ (3x + 2)(3x - 1) \][/tex]
Therefore, the factors of the polynomial [tex]\( 9x^2 + 3x - 2 \)[/tex] are:
[tex]\[ (3x + 2)(3x - 1) \][/tex]
So, the correct answer is:
C. [tex]\( (3x + 2)(3x - 1) \)[/tex]
1. Write down the polynomial:
[tex]\[ 9x^2 + 3x - 2 \][/tex]
2. Identify the terms in the polynomial:
- The coefficient of [tex]\( x^2 \)[/tex] is 9.
- The coefficient of [tex]\( x \)[/tex] is 3.
- The constant term is -2.
3. Find two numbers that multiply to give the product of the leading coefficient (9) and the constant term (-2).
The product of 9 and -2 is:
[tex]\[ 9 \cdot (-2) = -18 \][/tex]
4. We need two numbers that multiply to -18 and add up to the middle coefficient, 3. These numbers are 6 and -3 because:
[tex]\[ 6 \times (-3) = -18 \][/tex]
[tex]\[ 6 + (-3) = 3 \][/tex]
5. Rewrite the middle term using the two numbers found:
[tex]\[ 9x^2 + 6x - 3x - 2 \][/tex]
6. Factor by grouping:
Group the terms to factor out the common factors:
[tex]\[ (9x^2 + 6x) + (-3x - 2) \][/tex]
Factor out the greatest common factor from each group:
[tex]\[ 3x(3x + 2) - 1(3x + 2) \][/tex]
7. Factor out the common binomial factor:
Notice that [tex]\( 3x + 2 \)[/tex] is a common factor:
[tex]\[ (3x + 2)(3x - 1) \][/tex]
Therefore, the factors of the polynomial [tex]\( 9x^2 + 3x - 2 \)[/tex] are:
[tex]\[ (3x + 2)(3x - 1) \][/tex]
So, the correct answer is:
C. [tex]\( (3x + 2)(3x - 1) \)[/tex]
We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.