At Westonci.ca, we provide clear, reliable answers to all your questions. Join our vibrant community and get the solutions you need. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
Sure, let's go through the process of factoring the expression step-by-step to identify the correct answer.
Given expression:
[tex]\[ 5x^2 - 45 \][/tex]
### Step 1: Factor out the Greatest Common Factor (GCF)
First, we identify the greatest common factor of the terms in the expression. Here, 5 is the GCF of the terms [tex]\(5x^2\)[/tex] and [tex]\(-45\)[/tex]:
[tex]\[ 5x^2 - 45 = 5(x^2 - 9) \][/tex]
### Step 2: Recognize and apply the difference of squares
Next, we notice that [tex]\(x^2 - 9\)[/tex] is a difference of squares. Recall that a difference of squares can be factored using the formula:
[tex]\[ a^2 - b^2 = (a - b)(a + b) \][/tex]
In this case, [tex]\(x^2 - 9\)[/tex] fits the structure of a difference of squares, where:
[tex]\[ x^2 - 9 = x^2 - 3^2 \][/tex]
Applying the difference of squares formula:
[tex]\[ x^2 - 3^2 = (x - 3)(x + 3) \][/tex]
Therefore, we further factor [tex]\(5(x^2 - 9)\)[/tex] as follows:
[tex]\[ 5(x^2 - 9) = 5(x - 3)(x + 3) \][/tex]
### Conclusion
The completely factored form of [tex]\(5x^2 - 45\)[/tex] is:
[tex]\[ 5(x - 3)(x + 3) \][/tex]
Therefore, the correct answer is:
[tex]\[ \boxed{C} \][/tex]
Thus, the option C, [tex]\(5(x + 3)(x - 3)\)[/tex], is the correct factorization of the given expression.
Given expression:
[tex]\[ 5x^2 - 45 \][/tex]
### Step 1: Factor out the Greatest Common Factor (GCF)
First, we identify the greatest common factor of the terms in the expression. Here, 5 is the GCF of the terms [tex]\(5x^2\)[/tex] and [tex]\(-45\)[/tex]:
[tex]\[ 5x^2 - 45 = 5(x^2 - 9) \][/tex]
### Step 2: Recognize and apply the difference of squares
Next, we notice that [tex]\(x^2 - 9\)[/tex] is a difference of squares. Recall that a difference of squares can be factored using the formula:
[tex]\[ a^2 - b^2 = (a - b)(a + b) \][/tex]
In this case, [tex]\(x^2 - 9\)[/tex] fits the structure of a difference of squares, where:
[tex]\[ x^2 - 9 = x^2 - 3^2 \][/tex]
Applying the difference of squares formula:
[tex]\[ x^2 - 3^2 = (x - 3)(x + 3) \][/tex]
Therefore, we further factor [tex]\(5(x^2 - 9)\)[/tex] as follows:
[tex]\[ 5(x^2 - 9) = 5(x - 3)(x + 3) \][/tex]
### Conclusion
The completely factored form of [tex]\(5x^2 - 45\)[/tex] is:
[tex]\[ 5(x - 3)(x + 3) \][/tex]
Therefore, the correct answer is:
[tex]\[ \boxed{C} \][/tex]
Thus, the option C, [tex]\(5(x + 3)(x - 3)\)[/tex], is the correct factorization of the given expression.
We appreciate your time. Please come back anytime for the latest information and answers to your questions. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.