At Westonci.ca, we provide clear, reliable answers to all your questions. Join our vibrant community and get the solutions you need. Our platform connects you with professionals ready to provide precise answers to all your questions in various areas of expertise. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
To find the gravitational force between the ballerina and the Earth, we will use Newton's law of universal gravitation. Newton's law of universal gravitation states that every mass exerts an attractive force on every other mass. This gravitational force [tex]\( F \)[/tex] can be calculated using the formula:
[tex]\[ F = G \frac{m_1 m_2}{r^2} \][/tex]
where:
- [tex]\( F \)[/tex] is the gravitational force between the two masses,
- [tex]\( G \)[/tex] is the gravitational constant [tex]\((6.67430 \times 10^{-11} \, m^3 \, kg^{-1} \, s^{-2})\)[/tex],
- [tex]\( m_1 \)[/tex] is the mass of the ballerina [tex]\((40 \, kg)\)[/tex],
- [tex]\( m_2 \)[/tex] is the mass of the Earth [tex]\((5.98 \times 10^{24} \, kg)\)[/tex],
- [tex]\( r \)[/tex] is the distance between the center of the ballerina and the center of the Earth [tex]\((6.38 \times 10^6 \, m)\)[/tex].
We substitute these values into the formula:
[tex]\[ F = 6.67430 \times 10^{-11} \frac{40 \times 5.98 \times 10^{24}}{(6.38 \times 10^6)^2} \][/tex]
Let's simplify the terms inside the parentheses first:
- [tex]\( m_1 \times m_2 = 40 \times 5.98 \times 10^{24} = 239.2 \times 10^{24} \)[/tex]
- [tex]\( r^2 = (6.38 \times 10^6)^2 = 4.07044 \times 10^{13} \)[/tex]
With these, our formula now looks like:
[tex]\[ F = 6.67430 \times 10^{-11} \frac{239.2 \times 10^{24}}{4.07044 \times 10^{13}} \][/tex]
Next, we perform the division in the fraction:
[tex]\[ \frac{239.2 \times 10^{24}}{4.07044 \times 10^{13}} \approx 5.8767 \times 10^{10} \][/tex]
Now multiply this result by [tex]\( G \)[/tex]:
[tex]\[ F = 6.67430 \times 10^{-11} \times 5.8767 \times 10^{10} \][/tex]
The result of this multiplication gives us the gravitational force:
[tex]\[ F \approx 392.2162124979117 \, N \][/tex]
Therefore, the gravitational force between the ballerina (with a mass of [tex]\( 40 \, kg \)[/tex]) and the Earth (with a mass of [tex]\( 5.98 \times 10^{24} \, kg \)[/tex]), given the distance between them [tex]\( (6.38 \times 10^6 \, m) \)[/tex], is approximately [tex]\( 392.2162124979117 \, N \)[/tex].
[tex]\[ F = G \frac{m_1 m_2}{r^2} \][/tex]
where:
- [tex]\( F \)[/tex] is the gravitational force between the two masses,
- [tex]\( G \)[/tex] is the gravitational constant [tex]\((6.67430 \times 10^{-11} \, m^3 \, kg^{-1} \, s^{-2})\)[/tex],
- [tex]\( m_1 \)[/tex] is the mass of the ballerina [tex]\((40 \, kg)\)[/tex],
- [tex]\( m_2 \)[/tex] is the mass of the Earth [tex]\((5.98 \times 10^{24} \, kg)\)[/tex],
- [tex]\( r \)[/tex] is the distance between the center of the ballerina and the center of the Earth [tex]\((6.38 \times 10^6 \, m)\)[/tex].
We substitute these values into the formula:
[tex]\[ F = 6.67430 \times 10^{-11} \frac{40 \times 5.98 \times 10^{24}}{(6.38 \times 10^6)^2} \][/tex]
Let's simplify the terms inside the parentheses first:
- [tex]\( m_1 \times m_2 = 40 \times 5.98 \times 10^{24} = 239.2 \times 10^{24} \)[/tex]
- [tex]\( r^2 = (6.38 \times 10^6)^2 = 4.07044 \times 10^{13} \)[/tex]
With these, our formula now looks like:
[tex]\[ F = 6.67430 \times 10^{-11} \frac{239.2 \times 10^{24}}{4.07044 \times 10^{13}} \][/tex]
Next, we perform the division in the fraction:
[tex]\[ \frac{239.2 \times 10^{24}}{4.07044 \times 10^{13}} \approx 5.8767 \times 10^{10} \][/tex]
Now multiply this result by [tex]\( G \)[/tex]:
[tex]\[ F = 6.67430 \times 10^{-11} \times 5.8767 \times 10^{10} \][/tex]
The result of this multiplication gives us the gravitational force:
[tex]\[ F \approx 392.2162124979117 \, N \][/tex]
Therefore, the gravitational force between the ballerina (with a mass of [tex]\( 40 \, kg \)[/tex]) and the Earth (with a mass of [tex]\( 5.98 \times 10^{24} \, kg \)[/tex]), given the distance between them [tex]\( (6.38 \times 10^6 \, m) \)[/tex], is approximately [tex]\( 392.2162124979117 \, N \)[/tex].
We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.