Westonci.ca makes finding answers easy, with a community of experts ready to provide you with the information you seek. Explore in-depth answers to your questions from a knowledgeable community of experts across different fields. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
To compute [tex]\(\cos \left(-\frac{7 \pi}{12}\right)\)[/tex], follow these steps:
1. Recognize the Property of the Cosine Function: The cosine function is an even function, meaning [tex]\(\cos(-x) = \cos(x)\)[/tex] for any angle [tex]\(x\)[/tex]. This property allows us to simplify the problem:
[tex]\[ \cos \left(-\frac{7 \pi}{12}\right) = \cos \left(\frac{7 \pi}{12}\right) \][/tex]
2. Evaluate the Cosine of the Positive Angle: We need to find the value of [tex]\(\cos \left(\frac{7 \pi}{12}\right)\)[/tex].
3. Numerical Result: The value of [tex]\(\cos \left(\frac{7 \pi}{12}\right)\)[/tex] is approximately:
[tex]\[ \cos \left(\frac{7 \pi}{12}\right) \approx -0.25881904510252063 \][/tex]
Thus, the cosine of [tex]\(-\frac{7\pi}{12}\)[/tex] is:
[tex]\[ \cos \left(-\frac{7\pi}{12}\right) = -0.25881904510252063 \][/tex]
1. Recognize the Property of the Cosine Function: The cosine function is an even function, meaning [tex]\(\cos(-x) = \cos(x)\)[/tex] for any angle [tex]\(x\)[/tex]. This property allows us to simplify the problem:
[tex]\[ \cos \left(-\frac{7 \pi}{12}\right) = \cos \left(\frac{7 \pi}{12}\right) \][/tex]
2. Evaluate the Cosine of the Positive Angle: We need to find the value of [tex]\(\cos \left(\frac{7 \pi}{12}\right)\)[/tex].
3. Numerical Result: The value of [tex]\(\cos \left(\frac{7 \pi}{12}\right)\)[/tex] is approximately:
[tex]\[ \cos \left(\frac{7 \pi}{12}\right) \approx -0.25881904510252063 \][/tex]
Thus, the cosine of [tex]\(-\frac{7\pi}{12}\)[/tex] is:
[tex]\[ \cos \left(-\frac{7\pi}{12}\right) = -0.25881904510252063 \][/tex]
Thanks for using our platform. We're always here to provide accurate and up-to-date answers to all your queries. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.