Westonci.ca is the premier destination for reliable answers to your questions, brought to you by a community of experts. Join our Q&A platform to connect with experts dedicated to providing precise answers to your questions in different areas. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
To determine whether the exponential function consistently grows at a faster rate than the quadratic function over the interval [tex]\( 0 \leq x \leq 5 \)[/tex], we need to compare their values and growth rates at each point within this interval.
Let's consider the exponential function [tex]\( f(x) = 2^x \)[/tex] and the quadratic function [tex]\( g(x) = x^2 \)[/tex]. We will calculate the values of each function at integer points from 0 to 5, and then analyze the growth rates.
1. Calculate function values over the interval [tex]\( 0 \leq x \leq 5 \)[/tex]:
For the exponential function [tex]\( f(x) = 2^x \)[/tex]:
- [tex]\( f(0) = 2^0 = 1 \)[/tex]
- [tex]\( f(1) = 2^1 = 2 \)[/tex]
- [tex]\( f(2) = 2^2 = 4 \)[/tex]
- [tex]\( f(3) = 2^3 = 8 \)[/tex]
- [tex]\( f(4) = 2^4 = 16 \)[/tex]
- [tex]\( f(5) = 2^5 = 32 \)[/tex]
So, the exponential function values are: [tex]\([1, 2, 4, 8, 16, 32]\)[/tex].
For the quadratic function [tex]\( g(x) = x^2 \)[/tex]:
- [tex]\( g(0) = 0^2 = 0 \)[/tex]
- [tex]\( g(1) = 1^2 = 1 \)[/tex]
- [tex]\( g(2) = 2^2 = 4 \)[/tex]
- [tex]\( g(3) = 3^2 = 9 \)[/tex]
- [tex]\( g(4) = 4^2 = 16 \)[/tex]
- [tex]\( g(5) = 5^2 = 25 \)[/tex]
So, the quadratic function values are: [tex]\([0, 1, 4, 9, 16, 25]\)[/tex].
2. Determine growth rates for each function:
The growth rate is the difference between consecutive function values.
For the exponential function [tex]\( f(x) = 2^x \)[/tex]:
- Growth from [tex]\( x = 0 \)[/tex] to [tex]\( x = 1 \)[/tex]: [tex]\( 2 - 1 = 1 \)[/tex]
- Growth from [tex]\( x = 1 \)[/tex] to [tex]\( x = 2 \)[/tex]: [tex]\( 4 - 2 = 2 \)[/tex]
- Growth from [tex]\( x = 2 \)[/tex] to [tex]\( x = 3 \)[/tex]: [tex]\( 8 - 4 = 4 \)[/tex]
- Growth from [tex]\( x = 3 \)[/tex] to [tex]\( x = 4 \)[/tex]: [tex]\( 16 - 8 = 8 \)[/tex]
- Growth from [tex]\( x = 4 \)[/tex] to [tex]\( x = 5 \)[/tex]: [tex]\( 32 - 16 = 16 \)[/tex]
Growth rates for the exponential function: [tex]\([1, 2, 4, 8, 16]\)[/tex].
For the quadratic function [tex]\( g(x) = x^2 \)[/tex]:
- Growth from [tex]\( x = 0 \)[/tex] to [tex]\( x = 1 \)[/tex]: [tex]\( 1 - 0 = 1 \)[/tex]
- Growth from [tex]\( x = 1 \)[/tex] to [tex]\( x = 2 \)[/tex]: [tex]\( 4 - 1 = 3 \)[/tex]
- Growth from [tex]\( x = 2 \)[/tex] to [tex]\( x = 3 \)[/tex]: [tex]\( 9 - 4 = 5 \)[/tex]
- Growth from [tex]\( x = 3 \)[/tex] to [tex]\( x = 4 \)[/tex]: [tex]\( 16 - 9 = 7 \)[/tex]
- Growth from [tex]\( x = 4 \)[/tex] to [tex]\( x = 5 \)[/tex]: [tex]\( 25 - 16 = 9 \)[/tex]
Growth rates for the quadratic function: [tex]\([1, 3, 5, 7, 9]\)[/tex].
3. Compare growth rates:
We now compare the growth rates of both functions at each step:
- [tex]\( \text{At } x = 1: \)[/tex] Exponential growth rate [tex]\(1\)[/tex] vs. Quadratic growth rate [tex]\(1\)[/tex]
- [tex]\( \text{At } x = 2: \)[/tex] Exponential growth rate [tex]\(2\)[/tex] vs. Quadratic growth rate [tex]\(3\)[/tex]
- [tex]\( \text{At } x = 3: \)[/tex] Exponential growth rate [tex]\(4\)[/tex] vs. Quadratic growth rate [tex]\(5\)[/tex]
- [tex]\( \text{At } x = 4: \)[/tex] Exponential growth rate [tex]\(8\)[/tex] vs. Quadratic growth rate [tex]\(7\)[/tex]
- [tex]\( \text{At } x = 5: \)[/tex] Exponential growth rate [tex]\(16\)[/tex] vs. Quadratic growth rate [tex]\(9\)[/tex]
For the exponential function to consistently grow at a faster rate than the quadratic function, its growth rate must always be greater than the quadratic function's growth rate. Observing the growth rates:
- At [tex]\( x = 1 \)[/tex], the growth rates are equal.
- At [tex]\( x = 2 \)[/tex] and [tex]\( x = 3 \)[/tex], the quadratic function's growth rate is higher.
- At [tex]\( x = 4 \)[/tex] and [tex]\( x = 5 \)[/tex], the exponential function's growth rate is higher.
Thus, the exponential function does not consistently grow at a faster rate than the quadratic function over the interval [tex]\( 0 \leq x \leq 5 \)[/tex].
Let's consider the exponential function [tex]\( f(x) = 2^x \)[/tex] and the quadratic function [tex]\( g(x) = x^2 \)[/tex]. We will calculate the values of each function at integer points from 0 to 5, and then analyze the growth rates.
1. Calculate function values over the interval [tex]\( 0 \leq x \leq 5 \)[/tex]:
For the exponential function [tex]\( f(x) = 2^x \)[/tex]:
- [tex]\( f(0) = 2^0 = 1 \)[/tex]
- [tex]\( f(1) = 2^1 = 2 \)[/tex]
- [tex]\( f(2) = 2^2 = 4 \)[/tex]
- [tex]\( f(3) = 2^3 = 8 \)[/tex]
- [tex]\( f(4) = 2^4 = 16 \)[/tex]
- [tex]\( f(5) = 2^5 = 32 \)[/tex]
So, the exponential function values are: [tex]\([1, 2, 4, 8, 16, 32]\)[/tex].
For the quadratic function [tex]\( g(x) = x^2 \)[/tex]:
- [tex]\( g(0) = 0^2 = 0 \)[/tex]
- [tex]\( g(1) = 1^2 = 1 \)[/tex]
- [tex]\( g(2) = 2^2 = 4 \)[/tex]
- [tex]\( g(3) = 3^2 = 9 \)[/tex]
- [tex]\( g(4) = 4^2 = 16 \)[/tex]
- [tex]\( g(5) = 5^2 = 25 \)[/tex]
So, the quadratic function values are: [tex]\([0, 1, 4, 9, 16, 25]\)[/tex].
2. Determine growth rates for each function:
The growth rate is the difference between consecutive function values.
For the exponential function [tex]\( f(x) = 2^x \)[/tex]:
- Growth from [tex]\( x = 0 \)[/tex] to [tex]\( x = 1 \)[/tex]: [tex]\( 2 - 1 = 1 \)[/tex]
- Growth from [tex]\( x = 1 \)[/tex] to [tex]\( x = 2 \)[/tex]: [tex]\( 4 - 2 = 2 \)[/tex]
- Growth from [tex]\( x = 2 \)[/tex] to [tex]\( x = 3 \)[/tex]: [tex]\( 8 - 4 = 4 \)[/tex]
- Growth from [tex]\( x = 3 \)[/tex] to [tex]\( x = 4 \)[/tex]: [tex]\( 16 - 8 = 8 \)[/tex]
- Growth from [tex]\( x = 4 \)[/tex] to [tex]\( x = 5 \)[/tex]: [tex]\( 32 - 16 = 16 \)[/tex]
Growth rates for the exponential function: [tex]\([1, 2, 4, 8, 16]\)[/tex].
For the quadratic function [tex]\( g(x) = x^2 \)[/tex]:
- Growth from [tex]\( x = 0 \)[/tex] to [tex]\( x = 1 \)[/tex]: [tex]\( 1 - 0 = 1 \)[/tex]
- Growth from [tex]\( x = 1 \)[/tex] to [tex]\( x = 2 \)[/tex]: [tex]\( 4 - 1 = 3 \)[/tex]
- Growth from [tex]\( x = 2 \)[/tex] to [tex]\( x = 3 \)[/tex]: [tex]\( 9 - 4 = 5 \)[/tex]
- Growth from [tex]\( x = 3 \)[/tex] to [tex]\( x = 4 \)[/tex]: [tex]\( 16 - 9 = 7 \)[/tex]
- Growth from [tex]\( x = 4 \)[/tex] to [tex]\( x = 5 \)[/tex]: [tex]\( 25 - 16 = 9 \)[/tex]
Growth rates for the quadratic function: [tex]\([1, 3, 5, 7, 9]\)[/tex].
3. Compare growth rates:
We now compare the growth rates of both functions at each step:
- [tex]\( \text{At } x = 1: \)[/tex] Exponential growth rate [tex]\(1\)[/tex] vs. Quadratic growth rate [tex]\(1\)[/tex]
- [tex]\( \text{At } x = 2: \)[/tex] Exponential growth rate [tex]\(2\)[/tex] vs. Quadratic growth rate [tex]\(3\)[/tex]
- [tex]\( \text{At } x = 3: \)[/tex] Exponential growth rate [tex]\(4\)[/tex] vs. Quadratic growth rate [tex]\(5\)[/tex]
- [tex]\( \text{At } x = 4: \)[/tex] Exponential growth rate [tex]\(8\)[/tex] vs. Quadratic growth rate [tex]\(7\)[/tex]
- [tex]\( \text{At } x = 5: \)[/tex] Exponential growth rate [tex]\(16\)[/tex] vs. Quadratic growth rate [tex]\(9\)[/tex]
For the exponential function to consistently grow at a faster rate than the quadratic function, its growth rate must always be greater than the quadratic function's growth rate. Observing the growth rates:
- At [tex]\( x = 1 \)[/tex], the growth rates are equal.
- At [tex]\( x = 2 \)[/tex] and [tex]\( x = 3 \)[/tex], the quadratic function's growth rate is higher.
- At [tex]\( x = 4 \)[/tex] and [tex]\( x = 5 \)[/tex], the exponential function's growth rate is higher.
Thus, the exponential function does not consistently grow at a faster rate than the quadratic function over the interval [tex]\( 0 \leq x \leq 5 \)[/tex].
Visit us again for up-to-date and reliable answers. We're always ready to assist you with your informational needs. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.