Welcome to Westonci.ca, the Q&A platform where your questions are met with detailed answers from experienced experts. Discover comprehensive answers to your questions from knowledgeable professionals on our user-friendly platform. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.

For which pair of functions is the exponential consistently growing at a faster rate than the quadratic over the interval [tex][tex]$0 \leq x \leq 5$[/tex][/tex]?

A. [tex]f(x) = e^x[/tex] and [tex]g(x) = x^2[/tex]
B. [tex]f(x) = 2^x[/tex] and [tex]g(x) = x^2 + 1[/tex]
C. [tex]f(x) = 3^x[/tex] and [tex]g(x) = x^3[/tex]
D. [tex]f(x) = 2^x[/tex] and [tex]g(x) = x^3[/tex]


Sagot :

To determine whether the exponential function consistently grows at a faster rate than the quadratic function over the interval [tex]\( 0 \leq x \leq 5 \)[/tex], we need to compare their values and growth rates at each point within this interval.

Let's consider the exponential function [tex]\( f(x) = 2^x \)[/tex] and the quadratic function [tex]\( g(x) = x^2 \)[/tex]. We will calculate the values of each function at integer points from 0 to 5, and then analyze the growth rates.

1. Calculate function values over the interval [tex]\( 0 \leq x \leq 5 \)[/tex]:

For the exponential function [tex]\( f(x) = 2^x \)[/tex]:
- [tex]\( f(0) = 2^0 = 1 \)[/tex]
- [tex]\( f(1) = 2^1 = 2 \)[/tex]
- [tex]\( f(2) = 2^2 = 4 \)[/tex]
- [tex]\( f(3) = 2^3 = 8 \)[/tex]
- [tex]\( f(4) = 2^4 = 16 \)[/tex]
- [tex]\( f(5) = 2^5 = 32 \)[/tex]

So, the exponential function values are: [tex]\([1, 2, 4, 8, 16, 32]\)[/tex].

For the quadratic function [tex]\( g(x) = x^2 \)[/tex]:
- [tex]\( g(0) = 0^2 = 0 \)[/tex]
- [tex]\( g(1) = 1^2 = 1 \)[/tex]
- [tex]\( g(2) = 2^2 = 4 \)[/tex]
- [tex]\( g(3) = 3^2 = 9 \)[/tex]
- [tex]\( g(4) = 4^2 = 16 \)[/tex]
- [tex]\( g(5) = 5^2 = 25 \)[/tex]

So, the quadratic function values are: [tex]\([0, 1, 4, 9, 16, 25]\)[/tex].

2. Determine growth rates for each function:

The growth rate is the difference between consecutive function values.

For the exponential function [tex]\( f(x) = 2^x \)[/tex]:
- Growth from [tex]\( x = 0 \)[/tex] to [tex]\( x = 1 \)[/tex]: [tex]\( 2 - 1 = 1 \)[/tex]
- Growth from [tex]\( x = 1 \)[/tex] to [tex]\( x = 2 \)[/tex]: [tex]\( 4 - 2 = 2 \)[/tex]
- Growth from [tex]\( x = 2 \)[/tex] to [tex]\( x = 3 \)[/tex]: [tex]\( 8 - 4 = 4 \)[/tex]
- Growth from [tex]\( x = 3 \)[/tex] to [tex]\( x = 4 \)[/tex]: [tex]\( 16 - 8 = 8 \)[/tex]
- Growth from [tex]\( x = 4 \)[/tex] to [tex]\( x = 5 \)[/tex]: [tex]\( 32 - 16 = 16 \)[/tex]

Growth rates for the exponential function: [tex]\([1, 2, 4, 8, 16]\)[/tex].

For the quadratic function [tex]\( g(x) = x^2 \)[/tex]:
- Growth from [tex]\( x = 0 \)[/tex] to [tex]\( x = 1 \)[/tex]: [tex]\( 1 - 0 = 1 \)[/tex]
- Growth from [tex]\( x = 1 \)[/tex] to [tex]\( x = 2 \)[/tex]: [tex]\( 4 - 1 = 3 \)[/tex]
- Growth from [tex]\( x = 2 \)[/tex] to [tex]\( x = 3 \)[/tex]: [tex]\( 9 - 4 = 5 \)[/tex]
- Growth from [tex]\( x = 3 \)[/tex] to [tex]\( x = 4 \)[/tex]: [tex]\( 16 - 9 = 7 \)[/tex]
- Growth from [tex]\( x = 4 \)[/tex] to [tex]\( x = 5 \)[/tex]: [tex]\( 25 - 16 = 9 \)[/tex]

Growth rates for the quadratic function: [tex]\([1, 3, 5, 7, 9]\)[/tex].

3. Compare growth rates:

We now compare the growth rates of both functions at each step:
- [tex]\( \text{At } x = 1: \)[/tex] Exponential growth rate [tex]\(1\)[/tex] vs. Quadratic growth rate [tex]\(1\)[/tex]
- [tex]\( \text{At } x = 2: \)[/tex] Exponential growth rate [tex]\(2\)[/tex] vs. Quadratic growth rate [tex]\(3\)[/tex]
- [tex]\( \text{At } x = 3: \)[/tex] Exponential growth rate [tex]\(4\)[/tex] vs. Quadratic growth rate [tex]\(5\)[/tex]
- [tex]\( \text{At } x = 4: \)[/tex] Exponential growth rate [tex]\(8\)[/tex] vs. Quadratic growth rate [tex]\(7\)[/tex]
- [tex]\( \text{At } x = 5: \)[/tex] Exponential growth rate [tex]\(16\)[/tex] vs. Quadratic growth rate [tex]\(9\)[/tex]

For the exponential function to consistently grow at a faster rate than the quadratic function, its growth rate must always be greater than the quadratic function's growth rate. Observing the growth rates:
- At [tex]\( x = 1 \)[/tex], the growth rates are equal.
- At [tex]\( x = 2 \)[/tex] and [tex]\( x = 3 \)[/tex], the quadratic function's growth rate is higher.
- At [tex]\( x = 4 \)[/tex] and [tex]\( x = 5 \)[/tex], the exponential function's growth rate is higher.

Thus, the exponential function does not consistently grow at a faster rate than the quadratic function over the interval [tex]\( 0 \leq x \leq 5 \)[/tex].
We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.