Discover the best answers at Westonci.ca, where experts share their insights and knowledge with you. Get detailed and precise answers to your questions from a dedicated community of experts on our Q&A platform. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
To determine which polynomial function [tex]\( f(x) \)[/tex] has the specified roots and multiplicities, we need to ensure the polynomial meets the given criteria:
- Leading coefficient of 1
- Roots [tex]\(-4, 2\)[/tex], and [tex]\(9\)[/tex] with multiplicity 1
- Root [tex]\(-5\)[/tex] with multiplicity 3
We'll construct the polynomial step-by-step:
1. Identify the factors for each root:
- A root [tex]\( r \)[/tex] of a polynomial translates to a factor of [tex]\( (x - r) \)[/tex].
- For the root [tex]\(-4\)[/tex] with multiplicity 1: the factor is [tex]\( (x + 4) \)[/tex].
- For the root [tex]\(2\)[/tex] with multiplicity 1: the factor is [tex]\( (x - 2) \)[/tex].
- For the root [tex]\(9\)[/tex] with multiplicity 1: the factor is [tex]\( (x - 9) \)[/tex].
- For the root [tex]\(-5\)[/tex] with multiplicity 3: the factor is [tex]\( (x + 5)^3 \)[/tex].
2. Combine all factors to form the polynomial:
[tex]\[ f(x) = (x + 5)^3 (x + 4) (x - 2) (x - 9) \][/tex]
3. Check the leading coefficient:
- The polynomial [tex]\( f(x) = (x + 5)^3 (x + 4) (x - 2) (x - 9) \)[/tex] has a leading coefficient of 1, since all coefficients involve a basic unscaled binomial [tex]\( (x - r) \)[/tex].
4. Match given options with our polynomial:
- Option 1: [tex]\(3(x+5)(x+4)(x-2)(x-9)\)[/tex]
- This polynomial does not match as it scales the factors by 3 and does not have [tex]\( (x+5)^3 \)[/tex].
- Option 2: [tex]\(3(x-5)(x-4)(x+2)(x+9)\)[/tex]
- This polynomial has entirely different roots and does not match.
- Option 3: [tex]\((x+5)(x+5)(x+5)(x+4)(x-2)(x-9)\)[/tex]
- This polynomial matches perfectly with [tex]\((x+5)^3(x+4)(x-2)(x-9)\)[/tex].
- Option 4: [tex]\((x-5)(x-5)(x-5)(x-4)(x+2)(x+9)\)[/tex]
- This polynomial has entirely different roots and does not match.
Since Option 3 is the one that matches our constructed polynomial, the answer is:
[tex]\[ \boxed{(x+5)(x+5)(x+5)(x+4)(x-2)(x-9)} \][/tex]
- Leading coefficient of 1
- Roots [tex]\(-4, 2\)[/tex], and [tex]\(9\)[/tex] with multiplicity 1
- Root [tex]\(-5\)[/tex] with multiplicity 3
We'll construct the polynomial step-by-step:
1. Identify the factors for each root:
- A root [tex]\( r \)[/tex] of a polynomial translates to a factor of [tex]\( (x - r) \)[/tex].
- For the root [tex]\(-4\)[/tex] with multiplicity 1: the factor is [tex]\( (x + 4) \)[/tex].
- For the root [tex]\(2\)[/tex] with multiplicity 1: the factor is [tex]\( (x - 2) \)[/tex].
- For the root [tex]\(9\)[/tex] with multiplicity 1: the factor is [tex]\( (x - 9) \)[/tex].
- For the root [tex]\(-5\)[/tex] with multiplicity 3: the factor is [tex]\( (x + 5)^3 \)[/tex].
2. Combine all factors to form the polynomial:
[tex]\[ f(x) = (x + 5)^3 (x + 4) (x - 2) (x - 9) \][/tex]
3. Check the leading coefficient:
- The polynomial [tex]\( f(x) = (x + 5)^3 (x + 4) (x - 2) (x - 9) \)[/tex] has a leading coefficient of 1, since all coefficients involve a basic unscaled binomial [tex]\( (x - r) \)[/tex].
4. Match given options with our polynomial:
- Option 1: [tex]\(3(x+5)(x+4)(x-2)(x-9)\)[/tex]
- This polynomial does not match as it scales the factors by 3 and does not have [tex]\( (x+5)^3 \)[/tex].
- Option 2: [tex]\(3(x-5)(x-4)(x+2)(x+9)\)[/tex]
- This polynomial has entirely different roots and does not match.
- Option 3: [tex]\((x+5)(x+5)(x+5)(x+4)(x-2)(x-9)\)[/tex]
- This polynomial matches perfectly with [tex]\((x+5)^3(x+4)(x-2)(x-9)\)[/tex].
- Option 4: [tex]\((x-5)(x-5)(x-5)(x-4)(x+2)(x+9)\)[/tex]
- This polynomial has entirely different roots and does not match.
Since Option 3 is the one that matches our constructed polynomial, the answer is:
[tex]\[ \boxed{(x+5)(x+5)(x+5)(x+4)(x-2)(x-9)} \][/tex]
Thank you for your visit. We are dedicated to helping you find the information you need, whenever you need it. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.