Discover the best answers at Westonci.ca, where experts share their insights and knowledge with you. Explore in-depth answers to your questions from a knowledgeable community of experts across different fields. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
Certainly! To solve this problem step-by-step, we need to use the relation given by the gas law [tex]\(\frac{P_1}{T_1} = \frac{P_2}{T_2}\)[/tex], where:
- [tex]\(P_1\)[/tex] is the initial pressure.
- [tex]\(T_1\)[/tex] is the initial temperature (in Kelvin).
- [tex]\(P_2\)[/tex] is the final pressure.
- [tex]\(T_2\)[/tex] is the final temperature (in Kelvin).
Let's start with converting the given temperatures to Kelvin:
1. Convert the initial temperature [tex]\(T_1\)[/tex] from Celsius to Kelvin:
Given [tex]\(T_1 = 25^\circ C\)[/tex],
[tex]\[ T_1 = 25 + 273.15 = 298.15 \text{ K} \][/tex]
2. Use the gas law to solve for the final temperature [tex]\(T_2\)[/tex] in Kelvin:
We are given the pressures and the relation:
[tex]\[ \frac{P_1}{T_1} = \frac{P_2}{T_2} \][/tex]
Rearranging this equation to solve for [tex]\(T_2\)[/tex]:
[tex]\[ T_2 = \frac{P_2 \cdot T_1}{P_1} \][/tex]
3. Substitute the values into the equation:
Given [tex]\(P_1 = 0.96 \text{ atm}\)[/tex], [tex]\(P_2 = 1.25 \text{ atm}\)[/tex], and [tex]\(T_1 = 298.15 \text{ K}\)[/tex],
[tex]\[ T_2 = \frac{1.25 \cdot 298.15}{0.96} \][/tex]
[tex]\[ T_2 = \frac{372.6875}{0.96} \approx 388.21614583333337 \text{ K} \][/tex]
4. Convert the final temperature [tex]\(T_2\)[/tex] from Kelvin back to Celsius:
[tex]\[ T_2 \text{ in Celsius} = T_2 - 273.15 = 388.21614583333337 - 273.15 = 115.0661458333334^\circ C \][/tex]
So, the new temperature of the gas is approximately [tex]\(388.216 \text{ K}\)[/tex] or, when converted to Celsius, likewise approximately [tex]\(115.066 \text{ °C}\)[/tex].
Thus, from the given choices, the closest correct answer is:
[tex]\[ 115^\circ C \][/tex]
- [tex]\(P_1\)[/tex] is the initial pressure.
- [tex]\(T_1\)[/tex] is the initial temperature (in Kelvin).
- [tex]\(P_2\)[/tex] is the final pressure.
- [tex]\(T_2\)[/tex] is the final temperature (in Kelvin).
Let's start with converting the given temperatures to Kelvin:
1. Convert the initial temperature [tex]\(T_1\)[/tex] from Celsius to Kelvin:
Given [tex]\(T_1 = 25^\circ C\)[/tex],
[tex]\[ T_1 = 25 + 273.15 = 298.15 \text{ K} \][/tex]
2. Use the gas law to solve for the final temperature [tex]\(T_2\)[/tex] in Kelvin:
We are given the pressures and the relation:
[tex]\[ \frac{P_1}{T_1} = \frac{P_2}{T_2} \][/tex]
Rearranging this equation to solve for [tex]\(T_2\)[/tex]:
[tex]\[ T_2 = \frac{P_2 \cdot T_1}{P_1} \][/tex]
3. Substitute the values into the equation:
Given [tex]\(P_1 = 0.96 \text{ atm}\)[/tex], [tex]\(P_2 = 1.25 \text{ atm}\)[/tex], and [tex]\(T_1 = 298.15 \text{ K}\)[/tex],
[tex]\[ T_2 = \frac{1.25 \cdot 298.15}{0.96} \][/tex]
[tex]\[ T_2 = \frac{372.6875}{0.96} \approx 388.21614583333337 \text{ K} \][/tex]
4. Convert the final temperature [tex]\(T_2\)[/tex] from Kelvin back to Celsius:
[tex]\[ T_2 \text{ in Celsius} = T_2 - 273.15 = 388.21614583333337 - 273.15 = 115.0661458333334^\circ C \][/tex]
So, the new temperature of the gas is approximately [tex]\(388.216 \text{ K}\)[/tex] or, when converted to Celsius, likewise approximately [tex]\(115.066 \text{ °C}\)[/tex].
Thus, from the given choices, the closest correct answer is:
[tex]\[ 115^\circ C \][/tex]
We appreciate your time on our site. Don't hesitate to return whenever you have more questions or need further clarification. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Westonci.ca is your go-to source for reliable answers. Return soon for more expert insights.