Welcome to Westonci.ca, your one-stop destination for finding answers to all your questions. Join our expert community now! Our platform offers a seamless experience for finding reliable answers from a network of experienced professionals. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
To determine which functions represent a stretch of an exponential growth function, we need to analyze the base of each function.
An exponential growth function has the form [tex]\( f(x) = a b^x \)[/tex] where the base [tex]\( b \)[/tex] is greater than 1.
Let's examine each of the given functions:
1. [tex]\( f(x) = \frac{2}{3}\left(\frac{2}{3}\right)^x \)[/tex]
- In this function, the base is [tex]\( \frac{2}{3} \)[/tex].
- Since [tex]\( \frac{2}{3} < 1 \)[/tex], this function represents exponential decay, not growth.
2. [tex]\( f(x) = \frac{3}{2}\left(\frac{2}{3}\right)^x \)[/tex]
- In this function, the base is [tex]\( \frac{2}{3} \)[/tex].
- Again, [tex]\( \frac{2}{3} < 1 \)[/tex], indicating that this function represents exponential decay.
3. [tex]\( f(x) = \frac{3}{2}\left(\frac{3}{2}\right)^x \)[/tex]
- Here, the base is [tex]\( \frac{3}{2} \)[/tex].
- Since [tex]\( \frac{3}{2} > 1 \)[/tex], this function represents exponential growth.
4. [tex]\( f(x) = \frac{2}{3}\left(\frac{3}{2}\right)^x \)[/tex]
- In this function, the base is [tex]\( \frac{3}{2} \)[/tex].
- As [tex]\( \frac{3}{2} > 1 \)[/tex], this function also represents exponential growth.
Therefore, the functions that represent exponential growth are:
[tex]\[ f(x) = \frac{3}{2}\left(\frac{3}{2}\right)^x \][/tex]
[tex]\[ f(x) = \frac{2}{3}\left(\frac{3}{2}\right)^x \][/tex]
Hence, the options that represent exponential growth functions are 3 and 4.
An exponential growth function has the form [tex]\( f(x) = a b^x \)[/tex] where the base [tex]\( b \)[/tex] is greater than 1.
Let's examine each of the given functions:
1. [tex]\( f(x) = \frac{2}{3}\left(\frac{2}{3}\right)^x \)[/tex]
- In this function, the base is [tex]\( \frac{2}{3} \)[/tex].
- Since [tex]\( \frac{2}{3} < 1 \)[/tex], this function represents exponential decay, not growth.
2. [tex]\( f(x) = \frac{3}{2}\left(\frac{2}{3}\right)^x \)[/tex]
- In this function, the base is [tex]\( \frac{2}{3} \)[/tex].
- Again, [tex]\( \frac{2}{3} < 1 \)[/tex], indicating that this function represents exponential decay.
3. [tex]\( f(x) = \frac{3}{2}\left(\frac{3}{2}\right)^x \)[/tex]
- Here, the base is [tex]\( \frac{3}{2} \)[/tex].
- Since [tex]\( \frac{3}{2} > 1 \)[/tex], this function represents exponential growth.
4. [tex]\( f(x) = \frac{2}{3}\left(\frac{3}{2}\right)^x \)[/tex]
- In this function, the base is [tex]\( \frac{3}{2} \)[/tex].
- As [tex]\( \frac{3}{2} > 1 \)[/tex], this function also represents exponential growth.
Therefore, the functions that represent exponential growth are:
[tex]\[ f(x) = \frac{3}{2}\left(\frac{3}{2}\right)^x \][/tex]
[tex]\[ f(x) = \frac{2}{3}\left(\frac{3}{2}\right)^x \][/tex]
Hence, the options that represent exponential growth functions are 3 and 4.
Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.