Looking for trustworthy answers? Westonci.ca is the ultimate Q&A platform where experts share their knowledge on various topics. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
To simplify [tex]\( \frac{3 x^8 y^3}{3 x^7 y^3} \)[/tex] using only positive exponents, follow these steps:
1. Cancel out common factors in the numerator and the denominator:
The factor of 3 appears in both the numerator and the denominator, so it can be canceled out:
[tex]\[ \frac{3 x^8 y^3}{3 x^7 y^3} = \frac{x^8 y^3}{x^7 y^3} \][/tex]
2. Separate the expression into individual factors:
Now, treat the [tex]\(x\)[/tex] and [tex]\(y\)[/tex] terms separately:
[tex]\[ \frac{x^8 y^3}{x^7 y^3} = \frac{x^8}{x^7} \cdot \frac{y^3}{y^3} \][/tex]
3. Simplify the y terms:
[tex]\(\frac{y^3}{y^3}\)[/tex] is equal to 1 (since any non-zero term divided by itself is 1):
[tex]\[ \frac{y^3}{y^3} = 1 \][/tex]
4. Simplify the x terms using the properties of exponents:
When dividing like bases, you subtract the exponent in the denominator from the exponent in the numerator:
[tex]\[ \frac{x^8}{x^7} = x^{8-7} = x^1 = x \][/tex]
5. Combine the results:
Putting it all together, we have:
[tex]\[ \frac{x^8 y^3}{x^7 y^3} = x \cdot 1 = x \][/tex]
Final simplified expression:
[tex]\[ \boxed{x} \][/tex]
1. Cancel out common factors in the numerator and the denominator:
The factor of 3 appears in both the numerator and the denominator, so it can be canceled out:
[tex]\[ \frac{3 x^8 y^3}{3 x^7 y^3} = \frac{x^8 y^3}{x^7 y^3} \][/tex]
2. Separate the expression into individual factors:
Now, treat the [tex]\(x\)[/tex] and [tex]\(y\)[/tex] terms separately:
[tex]\[ \frac{x^8 y^3}{x^7 y^3} = \frac{x^8}{x^7} \cdot \frac{y^3}{y^3} \][/tex]
3. Simplify the y terms:
[tex]\(\frac{y^3}{y^3}\)[/tex] is equal to 1 (since any non-zero term divided by itself is 1):
[tex]\[ \frac{y^3}{y^3} = 1 \][/tex]
4. Simplify the x terms using the properties of exponents:
When dividing like bases, you subtract the exponent in the denominator from the exponent in the numerator:
[tex]\[ \frac{x^8}{x^7} = x^{8-7} = x^1 = x \][/tex]
5. Combine the results:
Putting it all together, we have:
[tex]\[ \frac{x^8 y^3}{x^7 y^3} = x \cdot 1 = x \][/tex]
Final simplified expression:
[tex]\[ \boxed{x} \][/tex]
We appreciate your visit. Hopefully, the answers you found were beneficial. Don't hesitate to come back for more information. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.