Get reliable answers to your questions at Westonci.ca, where our knowledgeable community is always ready to help. Our Q&A platform offers a seamless experience for finding reliable answers from experts in various disciplines. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
Let's analyze the function [tex]\( f(x)=\left(\frac{1}{6}\right)^x+2 \)[/tex] to determine its domain and range.
### Finding the Domain
1. Definition of the function: The function [tex]\( f(x)=\left(\frac{1}{6}\right)^x + 2 \)[/tex] is defined for all values of [tex]\( x \)[/tex]. This is because there are no restrictions on the exponent [tex]\( x \)[/tex] when the base is [tex]\(\frac{1}{6}\)[/tex] (a positive fraction less than 1).
- No square roots or logarithms are involved that could restrict [tex]\( x \)[/tex].
2. Conclusion on domain: Therefore, the domain of the function is all real numbers.
[tex]\[ \text{Domain: } \{x \mid x \text{ is a real number} \} \][/tex]
### Finding the Range
1. Behavior of the exponential part: The term [tex]\(\left(\frac{1}{6}\right)^x\)[/tex]:
- As [tex]\( x \)[/tex] approaches positive infinity ([tex]\( x \to \infty \)[/tex]), [tex]\(\left(\frac{1}{6}\right)^x \)[/tex] gets closer to 0 because [tex]\(\left(\frac{1}{6}\right)^x\)[/tex] is a fraction raised to a larger and larger positive power.
- As [tex]\( x \)[/tex] approaches negative infinity ([tex]\( x \to -\infty \)[/tex]), [tex]\(\left(\frac{1}{6}\right)^x \)[/tex] grows larger without bound because [tex]\( \left(\frac{1}{6}\right)^{-x} \)[/tex] becomes [tex]\( 6^x \)[/tex].
2. Adding the constant 2:
- Since [tex]\( \left(\frac{1}{6}\right)^x \)[/tex] approaches 0 as [tex]\( x \to \infty \)[/tex], the smallest value of [tex]\( f(x) \)[/tex] is [tex]\( 2 \)[/tex] approached asymptotically but never actually reaching.
- As [tex]\( x \to -\infty \)[/tex], [tex]\( \left(\frac{1}{6}\right)^x \to \infty \)[/tex], meaning [tex]\( f(x) \)[/tex] increases boundlessly.
3. Conclusion on range: Therefore, the function [tex]\( f(x) \)[/tex] will have values that start just over 2 and increase without bound.
[tex]\[ \text{Range: } \{y \mid y > 2\} \][/tex]
### Matching the Given Choices
From the choices provided:
1. [tex]\(\left\{x \left\lvert\, x>-\frac{1}{6}\right.\right\}\)[/tex]; [tex]\(\{y \mid y>0\}\)[/tex] — Incorrect domain and incorrect range.
2. [tex]\(\left\{x \left\lvert\, x>\frac{1}{6}\right.\right\}\)[/tex]; [tex]\(\{y \mid y>2\}\)[/tex] — Incorrect domain, correct range.
3. [tex]\(\{x \mid x \text{ is a real number}\}\)[/tex]; [tex]\(\{y \mid y>2\}\)[/tex] — Correct domain, correct range.
4. [tex]\(\{x \mid x \text{ is a real number}\}\)[/tex]; [tex]\(\{y \mid y>-2\}\)[/tex] — Correct domain, incorrect range.
Given our found domain and range, the correct option is:
[tex]\[ \boxed{3} \][/tex]
### Finding the Domain
1. Definition of the function: The function [tex]\( f(x)=\left(\frac{1}{6}\right)^x + 2 \)[/tex] is defined for all values of [tex]\( x \)[/tex]. This is because there are no restrictions on the exponent [tex]\( x \)[/tex] when the base is [tex]\(\frac{1}{6}\)[/tex] (a positive fraction less than 1).
- No square roots or logarithms are involved that could restrict [tex]\( x \)[/tex].
2. Conclusion on domain: Therefore, the domain of the function is all real numbers.
[tex]\[ \text{Domain: } \{x \mid x \text{ is a real number} \} \][/tex]
### Finding the Range
1. Behavior of the exponential part: The term [tex]\(\left(\frac{1}{6}\right)^x\)[/tex]:
- As [tex]\( x \)[/tex] approaches positive infinity ([tex]\( x \to \infty \)[/tex]), [tex]\(\left(\frac{1}{6}\right)^x \)[/tex] gets closer to 0 because [tex]\(\left(\frac{1}{6}\right)^x\)[/tex] is a fraction raised to a larger and larger positive power.
- As [tex]\( x \)[/tex] approaches negative infinity ([tex]\( x \to -\infty \)[/tex]), [tex]\(\left(\frac{1}{6}\right)^x \)[/tex] grows larger without bound because [tex]\( \left(\frac{1}{6}\right)^{-x} \)[/tex] becomes [tex]\( 6^x \)[/tex].
2. Adding the constant 2:
- Since [tex]\( \left(\frac{1}{6}\right)^x \)[/tex] approaches 0 as [tex]\( x \to \infty \)[/tex], the smallest value of [tex]\( f(x) \)[/tex] is [tex]\( 2 \)[/tex] approached asymptotically but never actually reaching.
- As [tex]\( x \to -\infty \)[/tex], [tex]\( \left(\frac{1}{6}\right)^x \to \infty \)[/tex], meaning [tex]\( f(x) \)[/tex] increases boundlessly.
3. Conclusion on range: Therefore, the function [tex]\( f(x) \)[/tex] will have values that start just over 2 and increase without bound.
[tex]\[ \text{Range: } \{y \mid y > 2\} \][/tex]
### Matching the Given Choices
From the choices provided:
1. [tex]\(\left\{x \left\lvert\, x>-\frac{1}{6}\right.\right\}\)[/tex]; [tex]\(\{y \mid y>0\}\)[/tex] — Incorrect domain and incorrect range.
2. [tex]\(\left\{x \left\lvert\, x>\frac{1}{6}\right.\right\}\)[/tex]; [tex]\(\{y \mid y>2\}\)[/tex] — Incorrect domain, correct range.
3. [tex]\(\{x \mid x \text{ is a real number}\}\)[/tex]; [tex]\(\{y \mid y>2\}\)[/tex] — Correct domain, correct range.
4. [tex]\(\{x \mid x \text{ is a real number}\}\)[/tex]; [tex]\(\{y \mid y>-2\}\)[/tex] — Correct domain, incorrect range.
Given our found domain and range, the correct option is:
[tex]\[ \boxed{3} \][/tex]
We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.