Westonci.ca is your trusted source for finding answers to a wide range of questions, backed by a knowledgeable community. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
Certainly! Let's work through this step by step.
---
First Part: Cross between Heterozygous Male (Ww) and Homozygous Recessive Female (ww)
When we cross a heterozygous male (Ww) with a homozygous recessive female (ww), we need to construct a Punnett square to determine the genotypes of the offspring.
1. Construct the Punnett Square:
[tex]\[ \begin{array}{|c|c|c|} \hline & W & w \\ \hline w & Ww & ww \\ \hline w & Ww & ww \\ \hline \end{array} \][/tex]
2. Determine the Probabilities:
- From the Punnett square:
- Ww (heterozygous) appears in two squares.
- ww (homozygous recessive) appears in two squares.
- Thus, the probability of having heterozygous (Ww) offspring is calculated as follows:
[tex]\[ \text{Probability of heterozygous offspring} = \frac{\text{Number of Ww outcomes}}{\text{Total outcomes}} = \frac{2}{4} = \frac{1}{2} = 0.5 \][/tex]
So, if a heterozygous male with the genotype [tex]\( Ww \)[/tex] is mated with a homozygous recessive female of genotype [tex]\( ww \)[/tex], there is a chance that 0.5 of the offspring will be heterozygous.
---
Second Part: Cross between Heterozygous (Ww) and Homozygous Dominant (WW)
When crossing a heterozygous individual (Ww) with a homozygous dominant (WW), we again construct the Punnett square.
1. Construct the Punnett Square:
[tex]\[ \begin{array}{|c|c|c|} \hline & W & w \\ \hline W & WW & Ww \\ \hline W & WW & Ww \\ \hline \end{array} \][/tex]
2. Determine the Probabilities:
- From the Punnett square:
- WW (homozygous dominant) appears in two squares.
- Ww (heterozygous) appears in two squares.
- ww (homozygous recessive) does not appear in any square (zero squares).
- Thus, the probability of having a homozygous recessive (ww) offspring is:
[tex]\[ \text{Probability of homozygous recessive offspring} = \frac{\text{Number of ww outcomes}}{\text{Total outcomes}} = \frac{0}{4} = 0 \][/tex]
So, if the heterozygous [tex]\( Ww \)[/tex] is crossed with a homozygous dominant [tex]\( WW \)[/tex], then the probability of having a homozygous recessive offspring is 0.
---
To summarize the correct answer:
- If a heterozygous male with the genotype [tex]\( Ww \)[/tex] is mated with a homozygous recessive female of genotype [tex]\( ww \)[/tex], there is a chance that 0.5 of the offspring will be heterozygous.
- If the heterozygous [tex]\( Ww \)[/tex] is crossed with a homozygous dominant [tex]\( WW \)[/tex], then the probability of having a homozygous recessive offspring is 0.
---
First Part: Cross between Heterozygous Male (Ww) and Homozygous Recessive Female (ww)
When we cross a heterozygous male (Ww) with a homozygous recessive female (ww), we need to construct a Punnett square to determine the genotypes of the offspring.
1. Construct the Punnett Square:
[tex]\[ \begin{array}{|c|c|c|} \hline & W & w \\ \hline w & Ww & ww \\ \hline w & Ww & ww \\ \hline \end{array} \][/tex]
2. Determine the Probabilities:
- From the Punnett square:
- Ww (heterozygous) appears in two squares.
- ww (homozygous recessive) appears in two squares.
- Thus, the probability of having heterozygous (Ww) offspring is calculated as follows:
[tex]\[ \text{Probability of heterozygous offspring} = \frac{\text{Number of Ww outcomes}}{\text{Total outcomes}} = \frac{2}{4} = \frac{1}{2} = 0.5 \][/tex]
So, if a heterozygous male with the genotype [tex]\( Ww \)[/tex] is mated with a homozygous recessive female of genotype [tex]\( ww \)[/tex], there is a chance that 0.5 of the offspring will be heterozygous.
---
Second Part: Cross between Heterozygous (Ww) and Homozygous Dominant (WW)
When crossing a heterozygous individual (Ww) with a homozygous dominant (WW), we again construct the Punnett square.
1. Construct the Punnett Square:
[tex]\[ \begin{array}{|c|c|c|} \hline & W & w \\ \hline W & WW & Ww \\ \hline W & WW & Ww \\ \hline \end{array} \][/tex]
2. Determine the Probabilities:
- From the Punnett square:
- WW (homozygous dominant) appears in two squares.
- Ww (heterozygous) appears in two squares.
- ww (homozygous recessive) does not appear in any square (zero squares).
- Thus, the probability of having a homozygous recessive (ww) offspring is:
[tex]\[ \text{Probability of homozygous recessive offspring} = \frac{\text{Number of ww outcomes}}{\text{Total outcomes}} = \frac{0}{4} = 0 \][/tex]
So, if the heterozygous [tex]\( Ww \)[/tex] is crossed with a homozygous dominant [tex]\( WW \)[/tex], then the probability of having a homozygous recessive offspring is 0.
---
To summarize the correct answer:
- If a heterozygous male with the genotype [tex]\( Ww \)[/tex] is mated with a homozygous recessive female of genotype [tex]\( ww \)[/tex], there is a chance that 0.5 of the offspring will be heterozygous.
- If the heterozygous [tex]\( Ww \)[/tex] is crossed with a homozygous dominant [tex]\( WW \)[/tex], then the probability of having a homozygous recessive offspring is 0.
Thank you for your visit. We are dedicated to helping you find the information you need, whenever you need it. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.