Westonci.ca is your trusted source for accurate answers to all your questions. Join our community and start learning today! Discover comprehensive solutions to your questions from a wide network of experts on our user-friendly platform. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
Let's solve the problem step-by-step:
1. Determine the kinetic energy of the hammer head:
- The mass of the hammer head [tex]\( m \)[/tex] is 0.8 kg.
- The velocity of the hammer head [tex]\( v \)[/tex] is 5 m/s.
The formula for kinetic energy [tex]\( KE \)[/tex] is:
[tex]\[ KE = \frac{1}{2} m v^2 \][/tex]
Plugging in the values:
[tex]\[ KE = \frac{1}{2} \times 0.8 \, \text{kg} \times (5 \, \text{m/s})^2 \][/tex]
[tex]\[ KE = \frac{1}{2} \times 0.8 \, \text{kg} \times 25 \, \text{m}^2/\text{s}^2 \][/tex]
[tex]\[ KE = 0.4 \, \text{kg} \times 25 \, \text{m}^2/\text{s}^2 \][/tex]
[tex]\[ KE = 10 \, \text{Joules} \][/tex]
2. Calculate the work done on the nail:
- The work done [tex]\( W \)[/tex] by the hammer is equal to the kinetic energy of the hammer head since all the kinetic energy is transferred to the nail.
[tex]\[ W = KE = 10 \, \text{Joules} \][/tex]
3. Determine the average force exerted on the nail:
- The distance [tex]\( d \)[/tex] over which the force is applied is 6 mm, which is 0.006 meters (since 1 mm = 0.001 m).
The formula for work done is:
[tex]\[ W = F_{\text{avg}} \times d \][/tex]
Rearranging to solve for the average force [tex]\( F_{\text{avg}} \)[/tex]:
[tex]\[ F_{\text{avg}} = \frac{W}{d} \][/tex]
Plugging in the values:
[tex]\[ F_{\text{avg}} = \frac{10 \, \text{Joules}}{0.006 \, \text{meters}} \][/tex]
[tex]\[ F_{\text{avg}} = \frac{10}{0.006} \, \text{Newtons} \][/tex]
[tex]\[ F_{\text{avg}} \approx 1666.67 \, \text{Newtons} \][/tex]
Therefore, the average force on the nail is approximately [tex]\( 1666.67 \, \text{Newtons} \)[/tex].
1. Determine the kinetic energy of the hammer head:
- The mass of the hammer head [tex]\( m \)[/tex] is 0.8 kg.
- The velocity of the hammer head [tex]\( v \)[/tex] is 5 m/s.
The formula for kinetic energy [tex]\( KE \)[/tex] is:
[tex]\[ KE = \frac{1}{2} m v^2 \][/tex]
Plugging in the values:
[tex]\[ KE = \frac{1}{2} \times 0.8 \, \text{kg} \times (5 \, \text{m/s})^2 \][/tex]
[tex]\[ KE = \frac{1}{2} \times 0.8 \, \text{kg} \times 25 \, \text{m}^2/\text{s}^2 \][/tex]
[tex]\[ KE = 0.4 \, \text{kg} \times 25 \, \text{m}^2/\text{s}^2 \][/tex]
[tex]\[ KE = 10 \, \text{Joules} \][/tex]
2. Calculate the work done on the nail:
- The work done [tex]\( W \)[/tex] by the hammer is equal to the kinetic energy of the hammer head since all the kinetic energy is transferred to the nail.
[tex]\[ W = KE = 10 \, \text{Joules} \][/tex]
3. Determine the average force exerted on the nail:
- The distance [tex]\( d \)[/tex] over which the force is applied is 6 mm, which is 0.006 meters (since 1 mm = 0.001 m).
The formula for work done is:
[tex]\[ W = F_{\text{avg}} \times d \][/tex]
Rearranging to solve for the average force [tex]\( F_{\text{avg}} \)[/tex]:
[tex]\[ F_{\text{avg}} = \frac{W}{d} \][/tex]
Plugging in the values:
[tex]\[ F_{\text{avg}} = \frac{10 \, \text{Joules}}{0.006 \, \text{meters}} \][/tex]
[tex]\[ F_{\text{avg}} = \frac{10}{0.006} \, \text{Newtons} \][/tex]
[tex]\[ F_{\text{avg}} \approx 1666.67 \, \text{Newtons} \][/tex]
Therefore, the average force on the nail is approximately [tex]\( 1666.67 \, \text{Newtons} \)[/tex].
We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.