Explore Westonci.ca, the premier Q&A site that helps you find precise answers to your questions, no matter the topic. Experience the ease of finding accurate answers to your questions from a knowledgeable community of professionals. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
To find the axis of symmetry of a parabola given by the quadratic equation [tex]\( y = x^2 + 3x + 1 \)[/tex], we can use the standard formula for the axis of symmetry. The general form of a quadratic equation is:
[tex]\[ y = ax^2 + bx + c \][/tex]
For the given equation [tex]\( y = x^2 + 3x + 1 \)[/tex], we can identify the coefficients as follows:
- [tex]\( a = 1 \)[/tex]
- [tex]\( b = 3 \)[/tex]
- [tex]\( c = 1 \)[/tex]
The formula for the axis of symmetry of a parabola is given by:
[tex]\[ x = -\frac{b}{2a} \][/tex]
Substituting the values of [tex]\( a \)[/tex] and [tex]\( b \)[/tex] into the formula, we get:
[tex]\[ x = -\frac{3}{2 \cdot 1} \][/tex]
[tex]\[ x = -\frac{3}{2} \][/tex]
[tex]\[ x = -1.5 \][/tex]
Thus, the axis of symmetry for the given parabola is [tex]\( x = -\frac{3}{2} \)[/tex].
Therefore, the correct answer is:
D. [tex]\( x = -\frac{3}{2} \)[/tex]
[tex]\[ y = ax^2 + bx + c \][/tex]
For the given equation [tex]\( y = x^2 + 3x + 1 \)[/tex], we can identify the coefficients as follows:
- [tex]\( a = 1 \)[/tex]
- [tex]\( b = 3 \)[/tex]
- [tex]\( c = 1 \)[/tex]
The formula for the axis of symmetry of a parabola is given by:
[tex]\[ x = -\frac{b}{2a} \][/tex]
Substituting the values of [tex]\( a \)[/tex] and [tex]\( b \)[/tex] into the formula, we get:
[tex]\[ x = -\frac{3}{2 \cdot 1} \][/tex]
[tex]\[ x = -\frac{3}{2} \][/tex]
[tex]\[ x = -1.5 \][/tex]
Thus, the axis of symmetry for the given parabola is [tex]\( x = -\frac{3}{2} \)[/tex].
Therefore, the correct answer is:
D. [tex]\( x = -\frac{3}{2} \)[/tex]
Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. We appreciate your time. Please come back anytime for the latest information and answers to your questions. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.