Discover a wealth of knowledge at Westonci.ca, where experts provide answers to your most pressing questions. Discover detailed solutions to your questions from a wide network of experts on our comprehensive Q&A platform. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.

Type the correct answer in each box. Use numerals instead of words. If necessary, use / for the fraction bar(s).

A right triangle [tex]\(ABC\)[/tex] has complementary angles [tex]\(A\)[/tex] and [tex]\(C\)[/tex].

If [tex]\(\sin(A)=\frac{24}{25}\)[/tex], the value of [tex]\(\cos(C)= \boxed{}\)[/tex]

If [tex]\(\cos(C)=\frac{20}{29}\)[/tex], the value of [tex]\(\sin(A)= \boxed{}\)[/tex]


Sagot :

A right triangle [tex]\( ABC \)[/tex] has complementary angles [tex]\( A \)[/tex] and [tex]\( C \)[/tex].

1. To determine the value of [tex]\(\cos(C)\)[/tex] when [tex]\(\sin(A) = \frac{24}{25}\)[/tex]:

- Since [tex]\( A \)[/tex] and [tex]\( C \)[/tex] are complementary angles, we know that [tex]\( \sin(A) = \cos(C) \)[/tex].
- Thus, if [tex]\(\sin(A) = \frac{24}{25}\)[/tex], then [tex]\(\cos(C) = \frac{24}{25}\)[/tex].

2. To determine the value of [tex]\(\sin(A)\)[/tex] when [tex]\(\cos(C) = \frac{20}{29}\)[/tex]:

- Similarly, since [tex]\( A \)[/tex] and [tex]\( C \)[/tex] are complementary angles, we know that [tex]\( \cos(C) = \sin(A) \)[/tex].
- Thus, if [tex]\(\cos(C) = \frac{20}{29}\)[/tex], then [tex]\(\sin(A) = \frac{20}{29}\)[/tex].

Therefore, the values are:

[tex]\[ \cos(C) = 0.96 \][/tex]
[tex]\[ \sin(A) = 0.6896551724137931 \][/tex]