Discover the answers you need at Westonci.ca, a dynamic Q&A platform where knowledge is shared freely by a community of experts. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
Certainly! Let's solve the equation [tex]\(\log_3(x+1) + \log_3(x-1) = 2\)[/tex] step by step.
1. Combine the Logarithms:
Using the property of logarithms that [tex]\(\log_b(a) + \log_b(c) = \log_b(ac)\)[/tex], we can combine the left side of the equation:
[tex]\[ \log_3((x+1)(x-1)) = 2 \][/tex]
2. Simplify the Argument:
Next, simplify the argument of the logarithm by multiplying the terms:
[tex]\[ (x+1)(x-1) = x^2 - 1 \][/tex]
So our equation now becomes:
[tex]\[ \log_3(x^2 - 1) = 2 \][/tex]
3. Rewrite in Exponential Form:
Express the logarithm equation as an exponential equation. Recall that if [tex]\(\log_b(a) = c\)[/tex], then [tex]\(a = b^c\)[/tex]. Thus:
[tex]\[ x^2 - 1 = 3^2 \][/tex]
Simplify [tex]\(3^2\)[/tex]:
[tex]\[ x^2 - 1 = 9 \][/tex]
4. Solve for [tex]\(x\)[/tex]:
To find [tex]\(x\)[/tex], add 1 to both sides:
[tex]\[ x^2 = 10 \][/tex]
Now, take the square root of both sides:
[tex]\[ x = \pm \sqrt{10} \][/tex]
5. Verify Solutions:
It's important to check whether both solutions are valid in the context of the original logarithmic equation because the arguments of the logarithms must be positive.
- For [tex]\(x = \sqrt{10}\)[/tex]:
[tex]\[ x + 1 = \sqrt{10} + 1 > 0 \quad \text{and} \quad x - 1 = \sqrt{10} - 1 > 0 \][/tex]
Since both values are positive, [tex]\(x = \sqrt{10}\)[/tex] is valid.
- For [tex]\(x = -\sqrt{10}\)[/tex]:
[tex]\[ x + 1 = -\sqrt{10} + 1 < 0 \quad \text{(invalid because argument of log must be positive)} \][/tex]
Thus, [tex]\(x = -\sqrt{10}\)[/tex] is not valid because it causes the arguments of the logarithms to be non-positive.
Therefore, the only valid solution to the equation is:
[tex]\[ x = \sqrt{10} \][/tex]
1. Combine the Logarithms:
Using the property of logarithms that [tex]\(\log_b(a) + \log_b(c) = \log_b(ac)\)[/tex], we can combine the left side of the equation:
[tex]\[ \log_3((x+1)(x-1)) = 2 \][/tex]
2. Simplify the Argument:
Next, simplify the argument of the logarithm by multiplying the terms:
[tex]\[ (x+1)(x-1) = x^2 - 1 \][/tex]
So our equation now becomes:
[tex]\[ \log_3(x^2 - 1) = 2 \][/tex]
3. Rewrite in Exponential Form:
Express the logarithm equation as an exponential equation. Recall that if [tex]\(\log_b(a) = c\)[/tex], then [tex]\(a = b^c\)[/tex]. Thus:
[tex]\[ x^2 - 1 = 3^2 \][/tex]
Simplify [tex]\(3^2\)[/tex]:
[tex]\[ x^2 - 1 = 9 \][/tex]
4. Solve for [tex]\(x\)[/tex]:
To find [tex]\(x\)[/tex], add 1 to both sides:
[tex]\[ x^2 = 10 \][/tex]
Now, take the square root of both sides:
[tex]\[ x = \pm \sqrt{10} \][/tex]
5. Verify Solutions:
It's important to check whether both solutions are valid in the context of the original logarithmic equation because the arguments of the logarithms must be positive.
- For [tex]\(x = \sqrt{10}\)[/tex]:
[tex]\[ x + 1 = \sqrt{10} + 1 > 0 \quad \text{and} \quad x - 1 = \sqrt{10} - 1 > 0 \][/tex]
Since both values are positive, [tex]\(x = \sqrt{10}\)[/tex] is valid.
- For [tex]\(x = -\sqrt{10}\)[/tex]:
[tex]\[ x + 1 = -\sqrt{10} + 1 < 0 \quad \text{(invalid because argument of log must be positive)} \][/tex]
Thus, [tex]\(x = -\sqrt{10}\)[/tex] is not valid because it causes the arguments of the logarithms to be non-positive.
Therefore, the only valid solution to the equation is:
[tex]\[ x = \sqrt{10} \][/tex]
We hope this was helpful. Please come back whenever you need more information or answers to your queries. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.