At Westonci.ca, we make it easy for you to get the answers you need from a community of knowledgeable individuals. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
To solve this problem, let's consider the situation where the velocity vector [tex]\( v \)[/tex] is equally inclined to the negative directions of both the [tex]\( x \)[/tex]-axis and the [tex]\( y \)[/tex]-axis.
The velocity vector [tex]\( \vec{v} \)[/tex] can be resolved into components along the [tex]\( x \)[/tex] and [tex]\( y \)[/tex] axes. Since it is equally inclined, the angle with each axis is [tex]\( 45^\circ \)[/tex].
Given:
[tex]\[ v = 5.00 \ \text{meters/second} \][/tex]
1. We know the vector is equally inclined to both axes, meaning it makes an angle of [tex]\( 45^\circ \)[/tex] with each axis. In such cases, the components of [tex]\( v \)[/tex] along the [tex]\( x \)[/tex] and [tex]\( y \)[/tex] directions ([tex]\( v_x \)[/tex] and [tex]\( v_y \)[/tex]) will have equal magnitudes but negative signs because they are in the negative directions.
2. The components of the velocity vector [tex]\( v \)[/tex] along the [tex]\( x \)[/tex] and [tex]\( y \)[/tex] axes can be found using trigonometric relations for a [tex]\( 45^\circ \)[/tex] angle:
[tex]\[ v_x = v \cos(45^\circ) \][/tex]
[tex]\[ v_y = v \cos(45^\circ) \][/tex]
Since [tex]\( \cos(45^\circ) = \frac{1}{\sqrt{2}} \)[/tex]:
[tex]\[ v_x = v \cdot \frac{1}{\sqrt{2}} \][/tex]
[tex]\[ v_y = v \cdot \frac{1}{\sqrt{2}} \][/tex]
3. Substituting the value of [tex]\( v = 5.00 \ \text{meters/second} \)[/tex]:
[tex]\[ v_y = 5.00 \cdot \frac{1}{\sqrt{2}} \][/tex]
[tex]\[ v_y = 5.00 \cdot \frac{\sqrt{2}}{2} \][/tex]
Simplifying the expression:
[tex]\[ v_y = 5.00 \cdot \frac{\sqrt{2}}{2} = 5.00 \cdot 0.7071 = 3.5355339059327378 \][/tex]
Since the vector is in the negative [tex]\( y \)[/tex]-direction:
[tex]\[ v_y = -3.5355339059327378 \ \text{meters/second} \][/tex]
Hence, the correct answer is:
A. -3.53 meters/second
The velocity vector [tex]\( \vec{v} \)[/tex] can be resolved into components along the [tex]\( x \)[/tex] and [tex]\( y \)[/tex] axes. Since it is equally inclined, the angle with each axis is [tex]\( 45^\circ \)[/tex].
Given:
[tex]\[ v = 5.00 \ \text{meters/second} \][/tex]
1. We know the vector is equally inclined to both axes, meaning it makes an angle of [tex]\( 45^\circ \)[/tex] with each axis. In such cases, the components of [tex]\( v \)[/tex] along the [tex]\( x \)[/tex] and [tex]\( y \)[/tex] directions ([tex]\( v_x \)[/tex] and [tex]\( v_y \)[/tex]) will have equal magnitudes but negative signs because they are in the negative directions.
2. The components of the velocity vector [tex]\( v \)[/tex] along the [tex]\( x \)[/tex] and [tex]\( y \)[/tex] axes can be found using trigonometric relations for a [tex]\( 45^\circ \)[/tex] angle:
[tex]\[ v_x = v \cos(45^\circ) \][/tex]
[tex]\[ v_y = v \cos(45^\circ) \][/tex]
Since [tex]\( \cos(45^\circ) = \frac{1}{\sqrt{2}} \)[/tex]:
[tex]\[ v_x = v \cdot \frac{1}{\sqrt{2}} \][/tex]
[tex]\[ v_y = v \cdot \frac{1}{\sqrt{2}} \][/tex]
3. Substituting the value of [tex]\( v = 5.00 \ \text{meters/second} \)[/tex]:
[tex]\[ v_y = 5.00 \cdot \frac{1}{\sqrt{2}} \][/tex]
[tex]\[ v_y = 5.00 \cdot \frac{\sqrt{2}}{2} \][/tex]
Simplifying the expression:
[tex]\[ v_y = 5.00 \cdot \frac{\sqrt{2}}{2} = 5.00 \cdot 0.7071 = 3.5355339059327378 \][/tex]
Since the vector is in the negative [tex]\( y \)[/tex]-direction:
[tex]\[ v_y = -3.5355339059327378 \ \text{meters/second} \][/tex]
Hence, the correct answer is:
A. -3.53 meters/second
Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.