Explore Westonci.ca, the premier Q&A site that helps you find precise answers to your questions, no matter the topic. Experience the ease of finding accurate answers to your questions from a knowledgeable community of professionals. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.

Fiona draws a circle with a diameter of 14 meters. What is the area of Fiona's circle?

A. [tex][tex]$7 \pi m^2$[/tex][/tex]
B. [tex][tex]$14 \pi m^2$[/tex][/tex]
C. [tex][tex]$28 \pi m^2$[/tex][/tex]
D. [tex][tex]$49 \pi m^2$[/tex][/tex]


Sagot :

To find the area of Fiona's circle, we start with the given diameter and follow the necessary steps to determine the radius and, subsequently, the area.

1. Determine the Radius:
- The diameter of the circle is given as 14 meters.
- The radius [tex]\( r \)[/tex] of a circle is half of the diameter.
- Therefore, the radius is:
[tex]\[ r = \frac{\text{diameter}}{2} = \frac{14}{2} = 7 \, \text{meters} \][/tex]

2. Calculate the Area:
- The formula for the area [tex]\( A \)[/tex] of a circle is:
[tex]\[ A = \pi r^2 \][/tex]
- Substituting the radius we found:
[tex]\[ A = \pi (7)^2 = \pi \times 49 = 49 \pi \, \text{square meters} \][/tex]

Thus, the area of Fiona's circle is [tex]\( 49 \pi \, \text{square meters} \)[/tex]. Therefore, the correct choice from the given options is:

[tex]\[ 49 \pi \, \text{m}^2 \][/tex]