Welcome to Westonci.ca, where finding answers to your questions is made simple by our community of experts. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
To determine the magnitude of [tex]\( v_x \)[/tex] when the velocity [tex]\( v \)[/tex] makes an angle of [tex]\( 60^\circ \)[/tex] with the positive direction of the [tex]\( y \)[/tex]-axis, we will use trigonometric relationships.
Firstly, let's understand the given information:
- The velocity [tex]\( v \)[/tex] has a magnitude of [tex]\( 4.00 \)[/tex] meters/second.
- The angle [tex]\( \theta \)[/tex] between the velocity vector and the positive [tex]\( y \)[/tex]-axis is [tex]\( 60^\circ \)[/tex].
To find the magnitude of the [tex]\( x \)[/tex]-component of the velocity [tex]\( v_x \)[/tex], we can use the sine function. In this context, the sine function relates the angle [tex]\( \theta \)[/tex] to the ratio of the opposite side (which in this case will be [tex]\( v_x \)[/tex]) over the hypotenuse (which is [tex]\( v \)[/tex]).
The formula is:
[tex]\[ v_x = v \sin(\theta) \][/tex]
Given:
[tex]\[ v = 4.00 \, \text{meters/second} \][/tex]
[tex]\[ \theta = 60^\circ \][/tex]
We need to convert the angle from degrees to radians:
[tex]\[ \theta \text{ (in radians)} = 60^\circ \times \frac{\pi}{180^\circ} = \frac{\pi}{3} \text{ radians} \approx 1.0472 \text{ radians} \][/tex]
Next, we use the sine of [tex]\( 60^\circ \)[/tex]:
[tex]\[ \sin\left(\frac{\pi}{3}\right) = \sqrt{3} / 2 \approx 0.866 \quad \text{(approximately taking its value)} \][/tex]
Now plug these values into the formula:
[tex]\[ v_x = 4.00 \times \sin\left(60^\circ\right) = 4.00 \times 0.866 \approx 3.46 \, \text{meters/second} \][/tex]
Therefore, the magnitude of [tex]\( v_x \)[/tex] is approximately [tex]\( 3.46 \)[/tex] meters/second, which corresponds to option B.
So, the correct answer is:
[tex]\[ \boxed{3.46 \text{ meters/second}} \][/tex]
Firstly, let's understand the given information:
- The velocity [tex]\( v \)[/tex] has a magnitude of [tex]\( 4.00 \)[/tex] meters/second.
- The angle [tex]\( \theta \)[/tex] between the velocity vector and the positive [tex]\( y \)[/tex]-axis is [tex]\( 60^\circ \)[/tex].
To find the magnitude of the [tex]\( x \)[/tex]-component of the velocity [tex]\( v_x \)[/tex], we can use the sine function. In this context, the sine function relates the angle [tex]\( \theta \)[/tex] to the ratio of the opposite side (which in this case will be [tex]\( v_x \)[/tex]) over the hypotenuse (which is [tex]\( v \)[/tex]).
The formula is:
[tex]\[ v_x = v \sin(\theta) \][/tex]
Given:
[tex]\[ v = 4.00 \, \text{meters/second} \][/tex]
[tex]\[ \theta = 60^\circ \][/tex]
We need to convert the angle from degrees to radians:
[tex]\[ \theta \text{ (in radians)} = 60^\circ \times \frac{\pi}{180^\circ} = \frac{\pi}{3} \text{ radians} \approx 1.0472 \text{ radians} \][/tex]
Next, we use the sine of [tex]\( 60^\circ \)[/tex]:
[tex]\[ \sin\left(\frac{\pi}{3}\right) = \sqrt{3} / 2 \approx 0.866 \quad \text{(approximately taking its value)} \][/tex]
Now plug these values into the formula:
[tex]\[ v_x = 4.00 \times \sin\left(60^\circ\right) = 4.00 \times 0.866 \approx 3.46 \, \text{meters/second} \][/tex]
Therefore, the magnitude of [tex]\( v_x \)[/tex] is approximately [tex]\( 3.46 \)[/tex] meters/second, which corresponds to option B.
So, the correct answer is:
[tex]\[ \boxed{3.46 \text{ meters/second}} \][/tex]
Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.